Feasibility study of simultaneous azo dye decolorization and bioelectricity generation by microbial fuel cell-coupled constructed wetland: substrate effects
نویسندگان
چکیده
Microbial fuel cells (MFCs) were embedded into constructed wetlands to form microbial fuel cell coupled constructed wetlands (CW-MFCs) and were used for simultaneous azo dye wastewater treatment and bioelectricity generation. For the first time, the effects of different substrate biomass on the performance of CW-MFCs were studied. Group A had the highest substrate biomass of 0.453 g VSS per L, followed in order by group D, group B and group C. CW-MFCs with more substrate biomass showed higher decolorization efficiencies but lower electrode performance. The decolorization efficiency and the maximal power density of group A were 92.7% and 0.117 W m , respectively, while the decolorization efficiency and the maximal power density of group C were 76.26% and 0.256 W m , respectively. The cathode performance had the greatest impact on the CW-MFC performance. This may be due to the high cathode activation resistance which may be caused by the lack of cathode microbes. The substrate biomass exerted significant effects on the electrode microbes. The CW-MFCs with more substrate biomass had fewer electrode microbes, which may reduce the electrode performance. This study highlights the applications of CW-MFCs and other MFCs that were built in a natural environment.
منابع مشابه
Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process
Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tes...
متن کاملEfficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell.
Large scale applications of microbial fuel cells (MFCs) have been severely hindered by several problems such as high internal resistance, low power output, expensive materials, and complicated configuration. To address these issues, a granular activated carbon based single chamber microbial fuel cell (GACB-SCMFC) has been designed using GAC-biocathodes without using any expensive materials for ...
متن کاملApplication of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملOptimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems
Constructed wetland-coupled microbial fuel cell systems (CW-MFCs) incorporate an aerobic zone and an anaerobic zone to generate electricity that achieves the oxidative degradation of contaminants. However, there are few reports on the performance of such coupled systems. In this study, we determined the optimal configuration of CW-MFCs to characterize their electricity generation performance. B...
متن کاملSulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell
The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...
متن کامل