Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy – a literature review
نویسندگان
چکیده
Spinal muscular atrophy linked to chromosome 5q (SMA) is a recessive, progressive, neuromuscular disorder caused by bi-allelic mutations in the SMN1 gene, resulting in motor neuron degeneration and variable presentation in relation to onset and severity. A prevalence of approximately 1-2 per 100,000 persons and incidence around 1 in 10,000 live births have been estimated with SMA type I accounting for around 60% of all cases. Since SMA is a relatively rare condition, studies of its prevalence and incidence are challenging. Most published studies are outdated and therefore rely on clinical rather than genetic diagnosis. Furthermore they are performed in small cohorts in small geographical regions and only study European populations. In addition, the heterogeneity of the condition can lead to delays and difficulties in diagnosing the condition, especially outside of specialist clinics, and contributes to the challenges in understanding the epidemiology of the disease. The frequency of unaffected, heterozygous carriers of the SMN1 mutations appears to be higher among Caucasian and Asian populations compared to the Black (Sub-Saharan African ancestry) population. However, carrier frequencies cannot directly be translated into incidence and prevalence, as very severe (death in utero) and very mild (symptom free in adults) phenotypes carrying bi-allelic SMN1 mutations exist, and their frequency is unknown. More robust epidemiological data on SMA covering larger populations based on accurate genetic diagnosis or newborn screening would be helpful to support planning of clinical studies, provision of care and therapies and evaluation of outcomes.
منابع مشابه
Spinal Muscular Atrophy: A Short Review Article
Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...
متن کاملClinical and molecular diagnosis of spinal muscular atrophy.
The spinal muscular atrophies are a group of disorders characterized by flaccid limb weakness. It is necessary to differentiate these from other causes and identify the SMA variants. In classical SMA, majority of the patients shows homozygous deletion of the telomeric SMN gene (SMN1) on chromosome 5q. The availability of DNA analysis has allowed proper genetic counseling and prenatal diagnosis ...
متن کاملLethal congenital contracture syndrome (LCCS), a fetal anterior horn cell disease, is not linked to the SMA 5q locus.
The lethal congenital contracture syndrome (LCCS) is an autosomal recessive syndrome (McKusick 253310) leading to perinatal death owing to early onset degeneration of the anterior horn motor neurones of the spinal cord. The neuropathological findings in the LCCS closely resemble those of spinal muscular atrophy (SMA). Since all the three types of SMA have been localised to the same gene locus o...
متن کاملClinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies
Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a gr...
متن کاملMolecular analysis of the neuronal apoptosis inhibitory protein gene in families with spinal muscular atrophy.
BACKGROUND Spinal muscular atrophy is an autosomal recessive disorder characterized by degeneration of anterior horn cells in the spinal cord leading to progressive muscular weakness and atrophy. The spinal muscular atrophy candidate interval genes including survival motor neuron, the responsible gene in spinal muscular atrophy phenotype expression, neuronal apoptosis inhibitory protein, and P4...
متن کامل