Processing images by semi-linear predictability minimization.

نویسندگان

  • N N Schraudolph
  • M Eldracher
  • J Schmidhuber
چکیده

In the predictability minimization approach, input patterns are fed into a system consisting of adaptive, initially unstructured feature detectors. There are also adaptive predictors constantly trying to predict current feature detector outputs from other feature detector outputs. Simultaneously, however, the feature detectors try to become as unpredictable as possible, resulting in a co-evolution of predictors and feature detectors. This paper describes the implementation of a visual processing system trained by semi-linear predictability minimization, and presents many experiments that examine its response to artificial and real-world images. In particular, we observe that under a wide variety of conditions, predictability minimization results in the development of well-known visual feature detectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A semi-blind channel estimation technique based on second-order blind method for CDMA systems

This paper aims at studying a semi-blind channel estimation scheme based on the subspace method or a carefully weighted linear prediction approach. The corresponding (composite) semi-blind cost functions result from a linear combination of the training-based cost function and a blind cost function. For each blind method, we show how to calculate the asymptotic estimation error. Therefore, by mi...

متن کامل

Randomization in clinical trials: stratification or minimization

Objectives. Operative clinical trials are often small and open-label. Randomization is therefore very important. Stratification and minimization are two randomization options in such trials. The first aim of this study was to compare stratification and minimization in terms of predictability and balance in order to help investigators choose the most appropriate allocation method. Our second aim...

متن کامل

Inexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring

The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involve the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edgepreserving ability. Various e...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Network

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 1999