An adaptive model for 2 D and 3 D dense non rigid motion computation
نویسندگان
چکیده
We describe a new method for computing a dense displacement eld from a time-sequence of 2D or 3D images. It consists in minimizing an energy deened on the space of correspondence functions. This energy is divided into two terms, one term which matches contour points and particularly high curvature points, and one regularization term which constrains the continuity of the eld. We introduce an adaptive mesh the resolution of which depends on the presence of edges and/or points of high curvature and we show how to use it to reduce the computational time of the method. We present experimental results on medical images which prove the validity of the approach and the accuracy of the computed displacement elds. Un mod ele adaptatif pour le calcul du mouvement dense et non rigide R esum e : Nous d ecrivons une m ethode originale de calcul de champ dense de vecteurs de d eplacement sur des s equences temporelles d'images 2D ou 3D. Elle consiste a minimiser une energie d eenie sur l'espace des fonctions de correspondance. Cette energie comporte deux termes, un terme qui vise a apparier les points de fort gradient dans l'image, et particuli erement les points de forte courbure, et un terme de r egularisation qui contr^ ole la continuit e du champ des vecteurs. Nous introduisons ensuite la technique des maillages adaptatifs pour laquelle la densit e des noeuds d ependra de la pr esence de points de contour et/ou de points de forte courbure dans l'image. Nous montrons comment utiliser cette approche pour r eduire le temps de calcul du champ des d eplacements. Nous pr esentons ennn des r esultats exp erimentaux sur des images m edicales qui illustrent la validit e de notre approche et la pr ecision du champ de vecteurs ainsi calcul e. Mots-cl e : Champ dense de vecteurs de d eplacement, Singularit es dii eren-tielles, M ethode des el ements nis,Maillages adaptatifs, Imagerie M edicale, 3D.
منابع مشابه
An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
متن کاملEarthquake Analysis of 3-D Structures on Sliding Foundation Using Yield Equation of the Contact Surface
A solution technique for the dynamic analysis of asymmetric base-isolated buildings, subject to earthquake ground motion, is presented. To develop the formulation, a yield surface as a function of both shear force and torsion moment of the sliding surface with rigid perfectly plastic behavior is constituted. To achieve the objective, the yield stress is defined by the friction coefficient throu...
متن کاملEarthquake Analysis of 3-D Structures on Sliding Foundation Using Yield Equation of the Contact Surface
A solution technique for the dynamic analysis of asymmetric base-isolated buildings, subject to earthquake ground motion, is presented. To develop the formulation, a yield surface as a function of both shear force and torsion moment of the sliding surface with rigid perfectly plastic behavior is constituted. To achieve the objective, the yield stress is defined by the friction coefficient throu...
متن کاملA duality between LM-fuzzy possibility computations and their logical semantics
Let X be a dcpo and let L be a complete lattice. The family σL(X) of all Scott continuous mappings from X to L is a complete lattice under pointwise order, we call it the L-fuzzy Scott structure on X. Let E be a dcpo. A mapping g : σL(E) −> M is called an LM-fuzzy possibility valuation of E if it preserves arbitrary unions. Denote by πLM(E) the set of all LM-fuzzy possibility valuations of E. T...
متن کاملPerceptual Grouping from Motion Cues Using Tensor Voting in 4-D
We present a novel approach for motion grouping from two frames, that recovers the dense velocity field, motion boundaries and regions, based on a 4-D Tensor Voting computational framework. Given two sparse sets of point tokens, we encode the image position and potential velocity for each token into a 4-D tensor. The voting process then enforces the motion smoothness while preserving motion dis...
متن کامل