Flow Near Submarine Canyons Driven by Constant Winds
نویسندگان
چکیده
Circulation over coastal submarine canyons driven by constant upwelling or downwelling wind stress is simulated and analyzed with a primitive equation ocean model. Astoria Canyon, on the west coast of North America, is the focus of this study, and model results are consistent with most major features of mean canyon circulation observed in Astoria Canyon. Near-surface flow crosses over the canyon, while a closed cyclone occurs within the canyon. Upwelling prevails within the canyon and is larger than wind-driven upwelling along the adjacent shelf break. Water rises from depths reaching 300 m to the canyon rim and, subsequently, onto the adjacent shell Onshore flow within the canyon is driven by the onshore pressure gradient force, due to the free surface slope created by the upwelling wind, and is enhanced by the limitation to alongshore flow by the canyon topography. Density gradients largely compensate the surface slope with realistic stratification, but continual upwelling persists near the edges of the canyon. Within the upper canyon (50-150 m below the canyon rim) a cyclone is created by flow turning into the canyon mouth, separating from the upstream edge, and advecting toward the downstream rim. Below this layer the cyclone is created by vortex stretching due to the upwelling. Downwelling winds create nearly the opposite flow, in which compression and momentum advection create a strong anticyclone within the canyon. Momentum advection is found to be important both in creating strong circulation within the canyon and in allowing the surface flow to cross the canyon undisturbed. Model results indicate that Astoria-like submarine canyons produce across shore transport of sufficient volume to flush a continental shelf in a few (2-5) years.
منابع مشابه
The Influence of Open Versus Periodic Alongshore Boundaries on Circulation Near Submarine Canyons
It is impractical to create gridded numerical models of coastal circulation with sufficient resolution around small topographic features, such as submarine canyons, and still have the alongshore boundaries placed beyond the decay distance of coastal trapped waves. Two solutions to this problem are to make the alongshore boundaries either open or periodic. Numerical simulations were performed wi...
متن کاملPeriodic Resuspension in Baltimore Canyon by Focusing of Internal Waves
High concentrations ofparticulate matter are frequently reported in submarine canyons. This study demonstrates that in Baltimore submarine canyon, elevated concentrations result from periodic resuspension events. The sloping bottom and V-shaped topography of submarine canyons could accelerate tidal flows in the canyon axis sufficiently to cause resuspension, which occurs predominantly at tidal ...
متن کاملPacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above abo...
متن کاملCirculation Near Submarine Canyons: A Modeling Study
Circulation near a submarine canyon is analyzed with a numerical model. Previous theoretical work indicated that stratification controlled the interaction of coastal flow with canyons, specifically, the ratio of canyon width to the internal radius of deformation. A wide canyon was thought to merely steer the flow, while a narrow canyon would create substantia• cross-shelf exchange. Four cases a...
متن کاملTime-dependent, wind-driven flow over a shallow midshelf submarine bank
[1] During summer 2001, high-resolution hydrographic, velocity, and bio-optical surveys were conducted over Heceta Bank off central Oregon. North of the bank, upwelling over simple bottom topography exhibited a classic response with a midshelf, baroclinic coastal jet and upwelled isopycnals. The coastal upwelling jet follows the bank topography as it widens offshore before reaching the southern...
متن کامل