Stacked auto-encoder for ASR error detection and word error rate prediction

نویسندگان

  • Shahab Jalalvand
  • Daniele Falavigna
چکیده

Recently, Stacked Auto-Encoders (SAE) have been successfully used for learning imbalanced datasets. In this paper, for the first time, we propose to use a Neural Network classifier furnished by an SAE structure for detecting the errors made by a strong Automatic Speech Recognition (ASR) system. Error detection on an automatic transcription provided by a ”strong” ASR system, i.e. exhibiting a small word error rate, is difficult due to the limited number of ”positive” examples (i.e. words erroneously recognized) available for training a binary classifier. In this paper we investigate and compare different types of classifiers for automatically detecting ASR errors, including the one based on a stacked auto-encoder architecture. We show the effectiveness of the latter by measuring and comparing performance on the automatic transcriptions of an English corpus collected from TED talks. Performance of each investigated classifier is evaluated both via receiving operating curve and via a measure, called mean absolute error, related to the quality in predicting the corresponding word error rate. The results demonstrates that the classifier based on SAE detects the ASR errors better than the other classification methods. Key-words: automatic word error detection, stacked autoencoder, word error rate prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASR Error Management for Improving Spoken Language Understanding

This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems. In this study, the SLU task consists in automatically extracting, from ASR transcriptions, semantic concepts and concept/values pairs in a e.g touristic information system. An approach is proposed for enriching the set of semantic labels...

متن کامل

Updating the silent speech challenge benchmark with deep learning

The 2010 Silent Speech Challenge benchmark is updated with new results obtained in a Deep Learning strategy, using the same input features and decoding strategy as in the original article. A Word Error Rate of 6.4% is obtained, compared to the published value of 17.4%. Additional results comparing new auto-encoder-based features with the original features at reduced dimensionality, as well as d...

متن کامل

Improving Non-native Speech Recognition Performance by Discriminative Training for Language Model in a CALL System

High non-native speech recognition performance is always a challenge for a CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning. Conventionally, possible error patterns, based on linguistic knowledge, are added to the ASR grammar network. However, the effectiveness of this approach depends much on the prior linguistic knowledge...

متن کامل

Acoustic Word Embeddings for ASR Error Detection

This paper focuses on error detection in Automatic Speech Recognition (ASR) outputs. A neural network architecture is proposed, which is well suited to handle continuous word representations, like word embeddings. In a previous study, the authors explored the use of linguistic word embeddings, and more particularly their combination. In this new study, the use of acoustic word embeddings is exp...

متن کامل

Error Detection in the Presence of Synchronization Loss

Cyclic codes are very attractive for error detection because of their low cost encoding and decoding circuits, and because of their high guaranteed minimum distance, but they suifer from very poor protection when word frame synchronization is lost. This note suggests starting the encoder and decoder circuits in an essentially random state, instead of the usual all-zero state. Under this conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015