Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis.
نویسندگان
چکیده
The two iron regulatory proteins IRP1 and IRP2 bind to transcripts of ferritin, transferrin receptor and other target genes to control the expression of iron metabolism proteins at the post-transcriptional level. Here we compare the effects of genetic ablation of IRP1 to IRP2 in mice. IRP1-/- mice misregulate iron metabolism only in the kidney and brown fat, two tissues in which the endogenous expression level of IRP1 greatly exceeds that of IRP2, whereas IRP2-/- mice misregulate the expression of target proteins in all tissues. Surprisingly, the RNA-binding activity of IRP1 does not increase in animals on a low-iron diet that is sufficient to activate IRP2. In animal tissues, most of the bifunctional IRP1 is in the form of cytosolic aconitase rather than an RNA-binding protein. Our findings indicate that the small RNA-binding fraction of IRP1, which is insensitive to cellular iron status, contributes to basal mammalian iron homeostasis, whereas IRP2 is sensitive to iron status and can compensate for the loss of IRP1 by increasing its binding activity. Thus, IRP2 dominates post-transcriptional regulation of iron metabolism in mammals.
منابع مشابه
Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo.
The iron-regulatory proteins (IRPs) posttranscriptionally regulate expression of transferrin receptor, ferritin, and other iron metabolism proteins. Although both IRPs can regulate expression of the same target genes, IRP2-/- mice significantly misregulate iron metabolism and develop neurodegeneration, whereas IRP1-/- mice are spared. We found that IRP2-/- cells misregulated iron metabolism whe...
متن کاملThe role of iron in pulmonary pathology
Respiratory disease accounts for a large proportion of emergency admissions to hospital and diseaseassociated mortality. Genetic association studies demonstrate a link between iron metabolism and pulmonary disease phenotypes. IREB2 is a gene that produces iron regulatory protein 2 (IRP2), which has a key role in iron homeostasis. This review addresses pathways involved in iron metabolism, parti...
متن کاملOxygen and iron regulation of iron regulatory protein 2.
Iron regulatory protein 2 (IRP2) is a central regulator of cellular iron homeostasis due to its regulation of specific mRNAs encoding proteins of iron uptake and storage. Iron regulates IRP2 by mediating its rapid proteasomal degradation, where hypoxia and the hypoxia mimetics CoCl2 and desferrioxamine (DFO) stabilize it. Previous studies showed that iron-mediated degradation of IRP2 requires t...
متن کاملIRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation.
Hypoxia inducible factor 2α (HIF2α) transcriptionally activates several genes in response to hypoxia. Under normoxic conditions, it undergoes oxygen-dependent degradation by the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) system. The presence of an iron-responsive element (IRE) within the 5' untranslated region of HIF2α mRNA suggests a further iron- and oxygen-dependent mechanism for trans...
متن کاملIroning out cancer.
New insights into the roles of proteins that regulate cellular iron in cancer growth, angiogenesis, and metastasis have recently emerged. Discoveries of the roles of ferroportin, hepcidin, lipocalin 2, and members of the six transmembrane epithelial antigen of the prostate (STEAP) and iron regulatory protein (IRP) families in cancer have provided specificity and molecular definition to the role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2004