Comparison of particle sizing techniques in the case of inhalation dry powders.
نویسندگان
چکیده
The objectives of this work were (i) to validate electrical zone sensing and laser diffraction for the analysis of primary particle size in the case of inhalation dry powders and (ii) to study the influence of the aggregation state of the powder on the sizing techniques. Free-flowing dry powders were prepared by spray-drying with a combination of albumin, lactose, and dipalmitoylphosphatidylcholine. The replacement of lactose by mannitol, the removal of albumin, and the atomization at high relative humidity all increased powder cohesion. Automated measurements were compared with primary particle sizes collected by light and electron microscopy. The mass mode obtained by electrical zone sensing and the mass median diameter measured by laser diffraction following dispersion with compressed air at a pressure of 3 bar or following suspension in water and ultrasonic dispersion at a power of 60 W for 30 s each provided primary particle sizes close to microscopy measurements. However, these conditions only applied in the case of slightly to moderately aggregated powders. For strongly agglomerated powders, an exact measurement of the size was only collected by laser diffraction in the wet state combined with ultrasonic dispersion. Our study underlies how measurement of primary particle size highly depends on both powder material and proper particle dispersion.
منابع مشابه
Effect of Particulate Properties of Inhaled Dry Powder Formulation on Bioavailability, Dissolution Rate of Drug Particles and Rate of Drug Removal from the Body
Introduction: The use of pulmonary drug delivery as a non-invasive drug delivery system for the systemic treatment of diseases as well as the topical treatment of respiratory diseases is increasing. Among the various inhaled formulations, inhaled dry powders show advantages over the other forms of inhaled medicines due to high stability, bioavailability and ease of use. The effect of particle p...
متن کاملUCL SCHOOL OF PHARMACY BRUNSWICK SQUARE Engineering Nanoparticle Agglomerates as Dry Powders for Pulmonary Drug Delivery
......................................................................................... 4 ACKNOWLEDGEMENTS ....................................................................... 6 LIST OF TABLES ............................................................................... 11 LIST OF FIGURES ............................................................................. 13 LIST OF ABBREVIATIO...
متن کاملThe preparation and application of pulmonary surfactant nanoparticles as absorption enhancers in insulin dry powder delivery.
AIM To study the preparation and application of pulmonary surfactant (PS) nanoparticles as absorption enhancers in insulin dry powder delivery. PS is a complex mixture of mainly phospholipids and proteins. The composition leads to a unique spreading effect of the surfactants as well as spontaneous nanoparticles formation, which may be favorable characteristics of pulmonary drug delivery systems...
متن کاملDesign and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation
The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution ...
متن کاملDesign, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery
The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 90 12 شماره
صفحات -
تاریخ انتشار 2001