Exotic QTL improve grain quality in the tri-parental wheat population SW84
نویسندگان
چکیده
DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84 Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC2F4 lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). STUDYING THE GENETIC CONTROL OF GRAIN QUALITY IN SW84 As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. UTILIZING FAVORABLE EXOTIC QTL ALLELES IN WHEAT BREEDING Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool.
منابع مشابه
Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...
متن کاملMapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers
Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...
متن کاملIdentifying Rare FHB-Resistant Segregants in Intransigent Backcross and F2 Winter Wheat Populations
Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). Infected grain is usually contaminated with deoxynivalenol (DON), a serious mycotoxin. The challenge in FHB resistance breeding is combining resistance with superior agronomic an...
متن کاملHordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare).
Endosperm texture has a tremendous impact on the end-use quality of wheat (Triticum aestivum L.). Cultivars of barley (Hordeum vulgare L.), a close relative of wheat, also vary measurably in grain hardness. However, in contrast to wheat, little is known about the genetic control of barley grain hardness. Puroindolines are endosperm-specific proteins found in wheat and its relatives. In wheat, p...
متن کاملFusarium Head Blight Resistance QTL in the Spring Wheat Cross Kenyon/86ISMN 2137
Fusarium head blight (FHB), caused by Fusarium graminearum, is a very important disease of wheat globally. Damage caused by F. graminearum includes reduced grain yield, reduced grain functional quality, and results in the presence of the trichothecene mycotoxin deoxynivalenol in Fusarium-damaged kernels. The development of FHB resistant wheat cultivars is an important component of integrated ma...
متن کامل