Inferring neural population dynamics from multiple partial recordings of the same neural circuit
نویسندگان
چکیده
Simultaneous recordings of the activity of large neural populations are extremely valuable as they can be used to infer the dynamics and interactions of neurons in a local circuit, shedding light on the computations performed. It is now possible to measure the activity of hundreds of neurons using 2-photon calcium imaging. However, many computations are thought to involve circuits consisting of thousands of neurons, such as cortical barrels in rodent somatosensory cortex. Here we contribute a statistical method for “stitching” together sequentially imaged sets of neurons into one model by phrasing the problem as fitting a latent dynamical system with missing observations. This method allows us to substantially expand the population-sizes for which population dynamics can be characterized—beyond the number of simultaneously imaged neurons. In particular, we demonstrate using recordings in mouse somatosensory cortex that this method makes it possible to predict noise correlations between non-simultaneously recorded neuron pairs.
منابع مشابه
Inferring Functional Neural Connectivity with Deep Residual Convolutional Networks
Measuring synaptic connectivity in large neuronal populations remains a major goal of modern neuroscience. While this connectivity is traditionally revealed by anatomical methods such as electron microscopy, an efficient alternative is to computationally infer functional connectivity from recordings of neural activity. However, these statistical techniques still require further refinement befor...
متن کاملVariational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains
When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophys...
متن کاملImplementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملCortical microcircuit determination through global perturbation and sparse sampling in grid cells
Under modern interrogation, famously well-studied neural circuits such as that for orientation tuning in V1 are steadily giving up their secrets, but quite basic questions about connectivity and dynamics, including whether most computation is done by lateral processing or by selective feedforward summation, remain unresolved. We show here that grid cells o↵er a particularly rich opportunity for...
متن کاملAnalysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کامل