Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity
نویسندگان
چکیده
Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers (eIF2α phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.
منابع مشابه
Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress.
Protein-tyrosine phosphatase 1B (PTP-1B) is the prototypic tyrosine phosphatase whose function in insulin signaling and metabolism is well established. Although the role of PTP-1B in dephosphorylating various cell surface receptor tyrosine kinases is clear, the mechanisms by which it modulates receptor function from the endoplasmic reticulum (ER) remains an enigma. Here, we provide evidence tha...
متن کاملDifferential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and T cell protein tyrosine phosphatase.
Protein-tyrosine phosphatase 1B (PTP1B) and T cell protein-tyrosine phosphatase (TCPTP) are closely related intracellular phosphatases implicated in the control of glucose homeostasis. PTP1B and TCPTP can function coordinately to regulate protein tyrosine kinase signaling, and PTP1B has been implicated previously in the regulation of endoplasmic reticulum (ER) stress. In this study, we assessed...
متن کاملLiver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress.
Obesity is associated with induction of the ER (endoplasmic reticulum)-stress response signalling and insulin resistance. PTP1B (protein tyrosine phosphatase 1B) is a major regulator of adiposity and insulin sensitivity. The aim of the present study was to investigate the role of L-PTP1B (liver-specific PTP1B) in chronically HFD (high-fat diet) and pharmacologically induced (tunicamycin and tha...
متن کاملComparison of Neuroprotective Effects of Melissa officinalis Total Extract and Its Acidic and Non-Acidic Fractions against A β-Induced Toxicity
Alzheimer’s disease (AD) is a neurodegenerative disease that was characterized with deposit of beta amyloid (Aβ) aggregate in senile plaque. Oxidative damage to neurons and loss of cholinergic neurons in forebrain region are observed in this disease. Melissa officinalis is a medicinal plant from Lamiaceae family, used traditionally in the treatment of cognitive disorders. It has cholinomimeti...
متن کاملComparison of Neuroprotective Effects of Melissa officinalis Total Extract and Its Acidic and Non-Acidic Fractions against A β-Induced Toxicity
Alzheimer’s disease (AD) is a neurodegenerative disease that was characterized with deposit of beta amyloid (Aβ) aggregate in senile plaque. Oxidative damage to neurons and loss of cholinergic neurons in forebrain region are observed in this disease. Melissa officinalis is a medicinal plant from Lamiaceae family, used traditionally in the treatment of cognitive disorders. It has cholinomimeti...
متن کامل