Changing Climate and Overgrazing Are Decimating Mongolian Steppes

نویسندگان

  • Yi Y. Liu
  • Jason P. Evans
  • Matthew F. McCabe
  • Richard A. M. de Jeu
  • Albert I. J. M. van Dijk
  • Albertus J. Dolman
  • Izuru Saizen
چکیده

Satellite observations identify the Mongolian steppes as a hotspot of global biomass reduction, the extent of which is comparable with tropical rainforest deforestation. To conserve or restore these grasslands, the relative contributions of climate and human activities to degradation need to be understood. Here we use a recently developed 21-year (1988-2008) record of satellite based vegetation optical depth (VOD, a proxy for vegetation water content and aboveground biomass), to show that nearly all steppe grasslands in Mongolia experienced significant decreases in VOD. Approximately 60% of the VOD declines can be directly explained by variations in rainfall and surface temperature. After removing these climate induced influences, a significant decreasing trend still persists in the VOD residuals across regions of Mongolia. Correlations in spatial patterns and temporal trends suggest that a marked increase in goat density with associated grazing pressures and wild fires are the most likely non-climatic factors behind grassland degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing.

The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70% of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or over-grazing, or both. Here, we employ a new atmospher...

متن کامل

Plant Functional Diversity and Species Diversity in the Mongolian Steppe

BACKGROUND The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. METHODOLOGY/PRINCIPAL FINDINGS In this study, a total of 324 quadrats located on the three main types of...

متن کامل

Mongolian Rangelands: Rodent Problems And Approaches To Alleviate Damage

Rodents are a major constraint to forage production for livestock in Mongolia. A technical program to identify the magnitude of the problem and strengthen the research capabilities of Mongolian rodent specialists was initiated in 1994. The Brandt's vole is the most widespread and the most detrimental rodent to the steppes of Mongolia. Limited resources inhibit activities by the Mongolian Plant ...

متن کامل

A Proposal on the Restoration of Nostoc flagelliforme for Sustainable Improvement in the Ecology of Arid Steppes in China

Nostoc flagelliforme, a filamentous nitrogen-fixing cyanobacterium, is widely distributed in arid steppes of the west and northwestern parts of China. However, as a food delicacy this species has been overexploited from 1970 to 2000. Moreover, overgrazing, land reclamation and the removal of medicinal herbs have caused severely reduced vegetation coverage there. In this communication, a badly d...

متن کامل

Restoration of Stipa kryloviisteppes in Inner Mongolia of China: Assesment of seed banks and vegetation composition

The landscapes of Inner Mongolia are widely known for the vast Stipa krylovii steppes. However, overgrazing and other improper land uses have extensively degraded the Stipa krylovii steppe ecosystem in recent decades. Knowledge about the soil seed banks and the remaining vegetation in these damaged ecosystems is crucial for guiding the restoration efforts. Using a germination method, this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013