Asparagine and boric Acid cause allantoate accumulation in soybean leaves by inhibiting manganese-dependent allantoate amidohydrolase.

نویسندگان

  • K M Lukaszewski
  • D G Blevins
  • D D Randall
چکیده

Our previous work demonstrated substantial accumulation of allantoate in leaf tissue of nodulated soybeans (Glycine max L. Merr., cv Williams) in response to nitrogen fertilization. Research was continued to determine the effect of nitrate and asparagine on ureide assimilation in soybean leaves. Stem infusion of asparagine into ureide-transporting soybeans resulted in a significant increase in allantoate concentration in leaf tissue. Accumulation of allantoate was also observed when asparagine was supplied in the presence of allopurinol, an inhibitor of xanthine dehydrogenase in the pathway of ureide biosynthesis. In vitro, asparagine was found to have an inhibitory effect on the activity of allantoate amidohydrolase, a Mn(2+)-dependent enzyme catalyzing allantoate breakdown in soybean leaves. The inhibition was partially overcome by supplemental Mn(2+) in enzyme assays. Another inhibitor of allantoate amidohydrolase, boric acid, applied foliarly on field-grown nodulated soybeans, caused up to a 10-fold increase in allantoate content of leaf tissue. Accumulation of allantoate in response to boric acid was either eliminated or greatly reduced in plants presprayed with Mn(2+). We conclude that elevated levels of allantoate in leaves of ureide-transporting soybeans fertilized with ammonium nitrate result from inhibition of allantoate degradation by asparagine and that Mn(2+) is a critical factor in this inhibition. Furthermore, our studies with asparagine and boric acid indicate that availability of Mn(2+) has a direct effect on ureide catabolism in soybean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soybean cultivars 'Williams 82' and 'Maple Arrow' produce both urea and ammonia during ureide degradation.

The ability of two soybean (Glycine max L. [Merrill]) cultivars, 'Williams 82' and 'Maple Arrow', which were reported to use different ureide degradation pathways, to degrade the ureides allantoin and allantoate was investigated. Protein fractions and total leaf homogenates from the fourth trifoliate leaves of both cultivars were examined for the ability to evolve either (14)CO(2) or [(14)C]ure...

متن کامل

Identification, biochemical characterization, and subcellular localization of allantoate amidohydrolases from Arabidopsis and soybean.

Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; ...

متن کامل

Ureide Accumulation in Response to Mn Nutrition by Eight Soybean Genotypes with N2 Fixation Tolerance to Soil Drying

was leaf gas exchange. The basis of the N2 fixation tolerance to water deficit in the eight selected PI lines is Nitrogen fixation in soybean (Glycine max Merr.) is especially not known. sensitive to soil drying. The basis of this sensitivity appears to be related to the fact that ureides are transported from the nodules, Recent studies have focused on ureide accumulation and the ureide concent...

متن کامل

Update on ureide degradation in legumes.

Warm season N2-fixing legumes move fixed N from the nodules to the aerial portions of the plant primarily in the form of ureides, allantoin and allantoate, oxidation products of purines synthesized de novo in the nodule. Ureides are also products of purine turnover in senescing tissues, such as seedling cotyledons. A combination of biochemical and molecular approaches in both crop and model spe...

متن کامل

The Ureide-Degrading Reactions of Purine Ring Catabolism Employ Three Amidohydrolases and One Aminohydrolase in Arabidopsis, Soybean, and Rice1[W]

Several ureides are intermediates of purine base catabolism, releasing nitrogen from the purine nucleotides for reassimilation into amino acids. In some legumes like soybean (Glycine max), ureides are used for nodule-to-shoot translocation of fixed nitrogen. Four enzymes of Arabidopsis (Arabidopsis thaliana), (1) allantoinase, (2) allantoate amidohydrolase (AAH), (3) ureidoglycine aminohydrolas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 99 4  شماره 

صفحات  -

تاریخ انتشار 1992