A Fuzzy Clustering Algorithm for Fingerprint Enhancement
نویسندگان
چکیده
Fingerprint Identification and Verification are important tools for both forensics (when dealing with crime evidence) and authentication when used as a biometricidentifier, say for access purposes. Although fingerprint authentication is considered an effective method, the quality of the verification is highly dependent upon sample quality. In the case of crimes, since most people would not leave clear footprints, it is important to have an effective enhancing method that would be able to assist narrow down the matching specimen while reducing the false-positives. We use a fuzzy clustering algorithm to enhance fingerprints, and report the encouraging results found.
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Robust Strucutural Fingerprint Restoration
Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...
متن کاملProbabilistic Algorithm based on Fuzzy Clustering for Indoor Location in Fingerprinting Positioning Method
Recently, the location of the fingerprint positioning technology is obviously superior to the signal transmission loss model based on the positioning technology, and is widely concerned by scholars. In the online phase, due to the efficiency of the probabilistic distribution matching computation is low and when clustering the position fingerprint database, hard clustering lead to degrading the ...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملFuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem
This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...
متن کامل