Elliptic Rook and File Numbers

نویسندگان

  • Michael J. Schlosser
  • Meesue Yoo
چکیده

Utilizing elliptic weights, we construct an elliptic analogue of rook numbers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel’s q-rook numbers by two additional independent parameters a and b, and a nome p. The elliptic rook numbers are shown to satisfy an elliptic extension of a factorization theorem which in the classical case was established by Goldman, Joichi and White and extended to the q-case by Garsia and Remmel. We obtain similar results for elliptic analogues of Garsia and Remmel’s q-file numbers for skyline boards. We also provide an elliptic extension of the j-attacking model introduced by Remmel and Wachs. Various applications of our results include elliptic analogues of (generalized) Stirling numbers of the first and second kind, Lah numbers, Abel numbers, and rrestricted versions thereof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An elliptic extension of the general product formula for augmented rook boards

Rook theory has been investigated by many people since its introduction by Kaplansky and Riordan in 1946. Goldman, Joichi and White in 1975 showed that the sum over k of the product of the (n− k)-th rook numbers multiplied by the k-th falling factorial polynomials factorize into a product. In the sequel, different types of generalizations and analogues of this product formula have been derived ...

متن کامل

m-Level rook placements

Goldman, Joichi, and White proved a beautiful theorem showing that the falling factorial generating function for the rook numbers of a Ferrers board factors over the integers. Briggs and Remmel studied an analogue of rook placements where rows are replaced by sets of m rows called levels. They proved a version of the factorization theorem in that setting, but only for certain Ferrers boards. We...

متن کامل

p-Rook Numbers and Cycle Counting in Cp o Sn

Cycle-counting rook numbers were introduced by Chung and Graham [8]. Cycle-counting q-rook numbers were introduced by Ehrenborg, Haglund, and Readdy [10] and cycle-counting q-hit numbers were introduced by Haglund [14]. Briggs and Remmel [5] introduced the theory of p-rook and p-hit numbers which is a rook theory model where the rook numbers correspond to partial permutations in Cp oSn, the wre...

متن کامل

p-Rook Numbers and Cycle Counting in Cp ≀ Sn

Cycle-counting rook numbers were introduced by Chung and Graham [7]. Cycle-counting q-rook numbers were introduced by Ehrenborg, Haglund, and Readdy [9] and cycle-counting q-hit numbers were introduced by Haglund [14]. Briggs and Remmel [4] introduced the theory of p-rook and p-hit numbers which is a rook theory model where the rook numbers correspond to partial permutations in Cp ≀ Sn, the wre...

متن کامل

Experimental Investigation of wake on an elliptic cylinder in the presence of tripping wire

In this research, the behavior and characteristics of the wake of flow in an elliptic cylinder with zero angle of attack in the presence of a tripping wire were investigated experimentally. For this purpose, the used an Aluminum cylinder with an elliptical cross section of the major and minor axis of 42.4 mm and 21.2 mm, respectively, and of the height of 390 mm. The cylinder model was examined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017