A model for brain life history evolution

نویسندگان

  • Mauricio González-Forero
  • Timm Faulwasser
  • Laurent Lehmann
چکیده

Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain's energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting ("me vs nature"), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model's parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Social life, evolution of intelligence, behaviour and human brain size

Social life is one of the most critical factors of the evolution of the behavior of non-human primates and humans. Several factors, such as an increase in brain size, adaptive modules, and grooming, are related to the complexities of social groups. Although some scientists have mentioned foraging as a rival hypothesis for the evolution of behavior, in this research, we tried to investigate the ...

متن کامل

Understanding primate brain evolution.

We present a detailed reanalysis of the comparative brain data for primates, and develop a model using path analysis that seeks to present the coevolution of primate brain (neocortex) and sociality within a broader ecological and life-history framework. We show that body size, basal metabolic rate and life history act as constraints on brain evolution and through this influence the coevolution ...

متن کامل

Brain ontogeny and life history in Pleistocene hominins.

A high level of encephalization is critical to the human adaptive niche and emerged among hominins over the course of the past 2 Myr. Evolving larger brains required important adaptive adjustments, in particular regarding energy allocation and life history. These adaptations included a relatively small brain at birth and a protracted growth of highly dependent offspring within a complex social ...

متن کامل

Large brains and lengthened life history periods in Odontocetes.

Previous work on primates and birds suggests that large brains require longer periods of juvenile growth, leading to reproductive constraints due to delayed maturation. However, longevity is often extended in large-brained species, possibly compensating for delayed maturation. We examined the relationship between brain size and life history periods in cetaceans, a large-brained mammalian order ...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the yield surface. In the present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017