Human Tracking using Particle Filter

نویسنده

  • Jharna Majumdar
چکیده

Human tracking is the process of locating moving objects (human) over time using camera. It has wide number of applications like security and surveillance, traffic control, video editing, medical imaging etc. It can be a time consuming process due to the large amount of data contained in video. The objective of human tracking is to associate target objects in consecutive video frames. To initiate human tracking an algorithm analyzes video frames and outputs the movement of targets between the frames. There are a number of algorithms each having its own strengths and weakness. Considering the intended use is important when choosing the algorithm. This paper proposes particle filter based methods for human tracking, addressing two major issues such as variations of distance measurement (similarity measure) and Re-Sampling algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Adaptive Multiple Kernels with SIR-Particle Filter Based Multi Human Tracking for Occluded Environment

This paper proposes a new technique to build a fully automatic tracking system which handles occlusion problem in a complex environment. In multiple human tracking, handling of occlusion is the challenging issue. When occlusion occurs, kernel based tracking was proven to be the promising approach. Hence, to overcome the occlusion problem the human body was considered to have multiple kernels. I...

متن کامل

A Novel Particle Filter based Object Tracking Framework via the Combination of State and Observation Optimization

Using particle filter to figure visual object tracking, a key problem is to choose appropriate image features as the observation model. In this paper, we present a novel particle filter based object tracking framework via the combination of state and observation optimization. We apply the technique to articulated human movement tracking. Result demonstrates the effectiveness of our method in so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013