Mitochondrial metabolite transport.

نویسندگان

  • Ferdinando Palmieri
  • Ciro Leonardo Pierri
چکیده

The flux of a variety of metabolites, nucleotides and coenzymes across the inner membrane of mitochondria is catalysed by a nuclear-coded superfamily of secondary transport proteins called MCs (mitochondrial carriers). The importance of MCs is demonstrated by their wide distribution in all eukaryotes, their role in numerous metabolic pathways and cell functions, and the identification of several diseases caused by alterations of their genes. MCs can easily be recognized in databases thanks to their striking sequence features. Until now, 22 MC subfamilies, which are well conserved throughout evolution, have been functionally characterized, mainly by transport assays upon heterologous gene expression, purification and reconstitution into liposomes. Given the significant sequence conservation, it is thought that all MCs use the same basic transport mechanism, although they exhibit different modes of transport and driving forces and their substrates vary in nature and size. Based on substrate specificity, sequence conservation and carrier homology models, progress has recently been made in understanding the transport mechanism of MCs by new insights concerning the existence of a substrate-binding site in the carrier cavity, of cytosolic and matrix gates and conserved proline and glycine residues in each of the six transmembrane alpha-helices. These structural properties are believed to play an important role in the conformational changes required for substrate translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Modeling of Mitochondrial Metabolism

We are in the process of constructing a kinetic model of mitochondrial metabolism including the electron transport (respiratory chain), the TCA cycle, the fatty acid metabolism (β oxidation), the inner-membrane metabolite carriers, the protein carriers, and the mitochondrial gene expression system. In this work, we report a model of these metabolic pathways that has been recently completed usin...

متن کامل

THE DISTURBANCES IN IRON TRANSPORT AND STORES AND TOTAL FREE RADICAL TRAPPING ABILITY OF BLOOD PLASMA IN BABIES WITH MITOCHONDRIAL ENCEPHALO MYOPATHIES

Babies with mitochondrial encephalomyopathies had higher ferritin levels than controls. Although plasma iron levels were simi lar in both groups, babies with mitochondrial encephalomyopathies had lower transferrin levels. Thiobarbituric acid reactive substances in plasma of babies with mitochondrial encephalomyopathies were higher thun in controls suggesting increased lipid oxidation. We s...

متن کامل

Innate Immune Function of Mitochondrial Metabolism

Sensing of microbe-associated molecular patterns or danger signals by innate immune receptors drives a complex exchange of information. Innate receptor signaling not only triggers transcriptional events but also induces profound changes in metabolic fluxes, redox balance, and metabolite abundance thereby influencing immune cell function. Mitochondria are at the core of metabolic adaptation to t...

متن کامل

Mitochondrial ion circuits.

Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact c...

متن کامل

Transport Pathways—Proton Motive Force Interrelationship in Durum Wheat Mitochondria

In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, ...

متن کامل

Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins

Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Essays in biochemistry

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2010