Relationship between the second type of covering-based rough set and matroid via closure operator
نویسندگان
چکیده
Recently, in order to broad the application and theoretical areas of rough sets and matroids, some authors have combined them from many different viewpoints, such as circuits, rank function, spanning sets and so on. In this paper, we connect the second type of covering-based rough sets and matroids from the view of closure operators. On one hand, we establish a closure system through the fixed point family of the second type of covering lower approximation operator, and then construct a closure operator. For a covering of a universe, the closure operator is a closure one of a matroid if and only if the reduct of the covering is a partition of the universe. On the other hand, we investigate the sufficient and necessary condition that the second type of covering upper approximation operation is a closure one of a matroid.
منابع مشابه
Relation matroid and its relationship with generalized rough set based on relation
Recently, the relationship between matroids and generalized rough sets based on relations has been studied from the viewpoint of linear independence of matrices. In this paper, we reveal more relationships by the predecessor and successor neighborhoods from relations. First, through these two neighborhoods, we propose a pair of matroids, namely predecessor relation matroid and successor relatio...
متن کاملGeometric lattice structure of covering-based rough sets through matroids
Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Geometric lattice has widely used in diverse fields, especially search algorithm design which plays important role in covering reductions. In this paper, we construct four geometric lattice structures of covering-based rough sets through matroids, and compare their relatio...
متن کاملMatroidal Structure of Generalized Rough Sets Based on Tolerance Relations
Rough set theory provides an effective tool to deal with uncertain, granular, and incomplete knowledge in information systems. Matroid theory generalizes the linear independence in vector spaces and has many applications in diverse fields, such as combinatorial optimization and rough sets. In this paper, we construct a matroidal structure of the generalized rough set based on a tolerance relati...
متن کاملTopological characterizations to three types of covering approximation operators
Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Topology, one of the most important subjects in mathematics, provides mathematical tools and interesting topics in studying information systems and rough sets. In this paper, we present the topological characterizations to three types of covering approximation operators. F...
متن کاملRelationship Between Partition Matroid and Rough Set Through k - rank Matroid ⋆
Rough set is a theory of data analysis and a mathematical tool for dealing with vagueness, incompleteness, and granularity. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. In this paper, we establish the relationships between partition matroids and rough sets through k-rank matroids. On the one hand, k-rank matroids are proposed to repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.0772 شماره
صفحات -
تاریخ انتشار 2012