Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair.

نویسندگان

  • Elda Cannavo
  • Giancarlo Marra
  • Jacob Sabates-Bellver
  • Mirco Menigatti
  • Steven M Lipkin
  • Franziska Fischer
  • Petr Cejka
  • Josef Jiricny
چکیده

The human mismatch repair (MMR) proteins hMLH1 and hPMS2 function in MMR as a heterodimer. Cells lacking either protein have a strong mutator phenotype and display microsatellite instability, yet mutations in the hMLH1 gene account for approximately 50% of hereditary nonpolyposis colon cancer families, whereas hPMS2 mutations are substantially less frequent and less penetrant. Similarly, in the mouse model, Mlh1-/- animals are highly cancer prone and present with gastrointestinal tumors at an early age, whereas Pms2-/- mice succumb to cancer much later in life and do not present with gastrointestinal tumors. This evidence suggested that MLH1 might functionally interact with another MutL homologue, which compensates, at least in part, for a deficiency in PMS2. Sterility of Mlh1-/-, Pms2-/-, and Mlh3-/- mice implicated the Mlh1/Pms2 and Mlh1/Mlh3 heterodimers in meiotic recombination. We now show that the hMLH1/hMLH3 heterodimer, hMutLgamma, can also assist in the repair of base-base mismatches and single extrahelical nucleotides in vitro. Analysis of hMLH3 expression in colon cancer cell lines indicated that the protein levels vary substantially and independently of hMLH1. If hMLH3 participates in MMR in vivo, its partial redundancy with hPMS2, coupled with the fluctuating expression levels of hMLH3, may help explain the low penetrance of hPMS2 mutations in hereditary nonpolyposis colon cancer families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination.

The mismatch-repair (MMR) system plays a central role in maintaining genetic stability and requires evolutionarily conserved protein factors, including MutS and MutL homologs. Since the discovery of a link between the malfunction of post-replicative MMR and human cancers, a number of works have focused on the function of MutS and MutL homologs in the correction of replication errors. However, s...

متن کامل

The interacting domains of three MutL heterodimers in man: hMLH1 interacts with 36 homologous amino acid residues within hMLH3, hPMS1 and hPMS2.

In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tri...

متن کامل

MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2

The process of post-replicative DNA-mismatch repair seems to be highly evolutionarily conserved. In Escherichia coli, DNA mismatches are recognized by the MutS protein. Homologues of the E. coli mutS and mutL mismatch-repair genes have been identified in other prokaryotes, as well as in yeast and mammals. Recombinant Saccharomyces cerevisiae MSH2 (MSH for MutS homologue) and human hMSH2 protein...

متن کامل

Human mismatch-repair protein MutL homologue 1 (MLH1) interacts with Escherichia coli MutL and MutS in vivo and in vitro: a simple genetic system to assay MLH1 function.

A simple genetic system has been developed to test the effect of over-expression of wild-type or mutated human MutL homologue 1 (hMLH1) proteins on methyl-directed mismatch repair (MMR) in Escherichia coli. The system relies on detection of Lac(+) revertants using MMR-proficient or MMR-deficient E. coli strains carrying a lac +1 frameshift mutation expressing hMLH1 proteins. We report that expr...

متن کامل

Mutations and loss of expression of a mismatch repair gene, hMLH1, in leukemia and lymphoma cell lines.

Defects in genes involved in DNA mismatch repair have been detected in both hereditary and sporadic tumors of colon, endometrium, and ovary and suggested to be associated with tumorigenesis. To investigate disruptions of the mismatch repair system in hematological malignancies, we examined alterations of the human mutL homologue 1 (hMLH1) gene, a member of the mismatch repair gene family, in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 23  شماره 

صفحات  -

تاریخ انتشار 2005