Helmholtz ’ s piano strings : reverberation of ripples on the tectorial membrane
نویسنده
چکیده
In 1857 Helmholtz proposed that the ear contained an array of sympathetic resonators, like piano strings, which served to give the ear its fine frequency discrimination. Since the discovery that most healthy human ears emit faint, pure tones (spontaneous otoacoustic emissions), it has been possible to view these narrowband signals as the continuous ringing of the resonant elements. But what are the elements? It is noteworthy that motile outer hair cells lie in a precise crystal-like array with their sensitive stereocilia in contact with the tectorial membrane, a gelatinous structure with an observed surface tension. This paper therefore speculates that ripples (surface tension waves) on the lower surface of the tectorial membrane propagate to and fro between neighbouring cells. This mechanism defines a surface acoustic wave (SAW) resonator, and relies on the outer hair cells directly sensing intracochlear fluid pressure through their cell bodies; in this way the theory revisits the resonance theory of hearing. The SAW resonator acts as a regenerative receiver of acoustic energy, a topology which was invoked in 1948 by Gold, who later drew the analogy to an 'underwater piano' to describe the cochlea's problem of how it could vibrate with high Q while immersed in fluid. The proposal also gives a physical description of the cochlear amplifier postulated by Davis in 1983. An active array of resonating cavities driven by outer hair cells can explain spontaneous emissions, the shape of the basilar membrane tuning curve, and evoked emissions, among others, and could relate strongly to music. At levels above which the cochlear amplifier saturates, ripples on the tectorial membrane can still be identified, this time due to vibration of the tectorial membrane against the sharp vestibular lip. This second putative mechanism provides time delays between initiation of the ripple by acoustic pressure variations and its detection by the inner hair cells, and so represents an alternative way of interpreting the traveling wave. Thus, by invoking two ways of generating ripples on the tectorial membrane, a comprehensive account of cochlear mechanics can be constructed, unifying a resonance theory (at low levels) with a traveling wave picture (at high levels).
منابع مشابه
The underwater piano: revival of the resonance theory of hearing
A three-dimensional view of the cochlear partition showing a string of the 'underwater piano', represented as a resonant cavity in the tectorial membrane. The 'string' is a standing wave (shown as solid black lines between vertical marks) generated between the first and third row of outer hair cells (test-tube shaped olive-green cells at right bearing yellow tufts of stereocilia). The oscillati...
متن کاملScanning electron microscopy of the auditory teeth along the mouse cochlear duct.
The auditory teeth in the spiral limbus of the cochlear duct are located under the limbal portion of the tectorial membrane and separated by furrows lodging the interdental cells. In this study, the shape, arrangement and distribution of the auditory teeth in the cochlear duct of adult mice were examined by scanning electron microscopy after removing the tectorial membrane and the interdental c...
متن کاملTectorial membrane injury: frequently overlooked in pediatric traumatic head injury.
REHs and tectorial membrane injuries are rare complications of pediatric head and neck injuries. We aim to describe the neuroimaging findings in pediatric REHs, to summarize the mechanism of injury, and to correlate the imaging findings with the clinical presentation. We retrospectively evaluated CT and/or MR imaging studies of 10 children with traumatic REH. Most patients were involved in MVAs...
متن کاملA laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir
The piano key weir (PKW) is a type of nonlinear control structure that can be used to increase unit discharge over linear overflow weir geometries, particularly when the weir footprint area is restricted To predict the outflow passing over a piano key weir, the discharge coefficient in the general equation of weir needs to be known. This paper presents the results of laboratory model testing of...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کامل