The Fractional Chapman Kolmogorov Equation
نویسنده
چکیده
The Chapman–Kolmogorov equation with fractional integrals is derived. An integral of fractional order is considered as an approximation of the integral on fractal. Fractional integrals can be used to describe the fractal media. Using fractional integrals, the fractional generalization of the Chapman–Kolmogorov equation is obtained. From the fractional Chapman–Kolmogorov equation, the Fokker–Planck equation is derived.
منابع مشابه
The Fractional Chapman - Kolmogorov Equation Vasily
The Chapman-Kolmogorov equation with fractional integrals is derived. An integral of fractional order is considered as an approximation of the integral on fractal. Fractional integrals can be used to describe the fractal media. Using fractional integrals, the fractional generalization of the Chapman-Kolmogorov equation is obtained. From the fractional Chapman-Kolmogorov equation, the Fokker-Pla...
متن کاملFractional Fokker-Planck equation for fractal media.
We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...
متن کاملLévy-Kolmogorov scaling of turbulence
The Kolmogorov scaling law of turbulences has been considered the most important theoretical breakthrough in the last century. It is an essential approach to analyze turbulence data present in meteorological, physical, chemical, biological and mechanical phenomena. One of its very fundamental assumptions is that turbulence is a stochastic Gaussian process in small scales. However, experiment da...
متن کاملSDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations
It is known that if a stochastic process is a solution to a classical Itô stochastic differential equation (SDE), then its transition probabilities satisfy in the weak sense the associated Cauchy problem for the forward Kolmogorov equation. The forward Kolmogorov equation is a parabolic partial differential equation with coefficients determined by the corresponding SDE. Stochastic processes whi...
متن کاملA Direct Proof of Cauchy Process on a Circle
By using integration method, we give a directly proof that the Cauchy process on a circle satisfies the Chapman-Kolmogorov equation.
متن کامل