Structure and enumeration of ( 3 + 1 ) - free posets ( extended
نویسندگان
چکیده
A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets are the subject of the (3 + 1)-free conjecture of Stanley and Stembridge. Recently, Lewis and Zhang have enumerated graded (3+1)-free posets, but until now the general enumeration problem has remained open. We enumerate all (3 + 1)-free posets by giving a decomposition into bipartite graphs, and obtain generating functions for (3 + 1)-free posets with labelled or unlabelled vertices. Résumé. Un poset sans (3 + 1) est un poset qui n’a pas de sous-poset induit formé de deux chaı̂nes disjointes de longeur 3 et 1. Ces posets sont l’objet de la conjecture (3+1) de Stanley et Stembridge. Récemment, Lewis et Zhang on énuméré les posets étagés sans (3 + 1), mais en général la question d’énumération est restée ouverte jusqu’à maintenant. Nous énumérons tous les posets sans (3 + 1) en donnant une décomposition de ces posets en graphes bipartis, et obtenons des fonctions génératrices qui les énumèrent, qu’ils soient étiquetés ou non.
منابع مشابه
Structure and Enumeration of (3 + 1)-free Posets
A poset is (3 + 1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3 + 1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a f...
متن کاملEnumeration of Graded ( 3 + 1 ) - Avoiding Posets ( extended abstract )
The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate graded (3+1)-avoiding posets. Our proof consists of a number of structural theorems followed by some generating function magic. Résumé. L’idée de l’évitement de (3+1) apparaı̂t dans beaucoup d’endroits dans le c...
متن کاملEnumeration of Subclasses of (2+2)-free Partially Ordered Sets
We investigate avoidance in (2+2)-free partially ordered sets, posets that do not contain any induced subposet isomorphic to the union of two disjoint chains of length two. In particular, we are interested in enumerating the number of partially ordered sets of size n avoiding both 2+2 and some other poset α. For any α of size 3, the results are already well-known. However, out of the 15 such α ...
متن کاملNoncommutative Enumeration in Graded Posets
We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even on Eulerian posets, the algebra is free, with generators corresponding...
متن کاملOn (po-)torsion free and principally weakly (po-)flat $S$-posets
In this paper, we first consider (po-)torsion free and principally weakly (po-)flat $S$-posets, specifically we discuss when (po-)torsion freeness implies principal weak (po-)flatness. Furthermore, we give a counterexample to show that Theorem 3.22 of Shi is incorrect. Thereby we present a correct version of this theorem. Finally, we characterize pomonoids over which all cyclic $S$-posets are ...
متن کامل