A Direct Proof of the Equivalence between Brouwer's Fan Theorem and König's Lemma with a Uniqueness Hypothesis

نویسنده

  • Helmut Schwichtenberg
چکیده

From results of Ishihara it is known that the weak (that is, binary) form of König’s lemma (WKL) implies Brouwer’s fan theorem (Fan). Moreover, Berger and Ishihara [MLQ 2005] have shown that a weakened form WKL! of WKL, where as an additional hypothesis it is required that in an effective sense infinite paths are unique, is equivalent to Fan. The proof that WKL! implies Fan is done explicitely. The other direction (Fan implies WKL!) is far less directly proved; the emphasis is rather to provide a fair number of equivalents to Fan, and to do the proofs economically by giving a circle of implications. Here we give a direct construction. Moreover, we go one step further and formalize the equivalence proof (in the Minlog proof assistant). Since the statements of both Fan and WKL! have computational content, we can automatically extract terms from the two proofs. It turns out that these terms express in a rather perspicuous way the informal constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another Unique Weak König’s Lemma Wkl!!

In [2] J. Berger and Ishihara proved, via a circle of informal implications involving countable choice, that Brouwer’s Fan Theorem for detachable bars on the binary fan is equivalent in Bishop’s sense to various principles including a version WKL! of Weak König’s Lemma with a strong effective uniqueness hypothesis. Schwichtenberg [9] proved the equivalence directly and formalized his proof in M...

متن کامل

Feasible Combinatorial Matrix Theory

We give the first, as far as we know, feasible proof of König’s Min-Max Theorem (KMM), a fundamental result in combinatorial matrix theory, and we show the equivalence of KMM to various Min-Max principles, with proofs of low complexity.

متن کامل

ODE Oral Exam Notes 2008

Theorem 2. Picard-Lindelof existence/uniqueness theorem Suppose f : (I × U) ⊆ (R × R) → R is continuous in (t, y) and uniformly Lipschitz in y. Then ∀(τ, ξ) ∈ (I × U), the ODE [ẏ = f(t, y) with y(τ) = ξ] has a unique solution on {t ∈ I : |t− τ | < α} for some α > 0. Depends on: Completeness of R, Gronwalls lemma (for uniqueness Proof idea: 5 steps: 1. Choose a, b s.t. {t : |t − τ | < a} ⊆ I and...

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

عدد تناوبی گراف‌ها

In 2015, Alishahi and Hajiabolhassan introduced the altermatic number of graphs as a lower bound for the chromatic number of them. Their proof is based on the Tucker lemma, a combinatorial counterpart of the Borsuk-Ulam theorem, which is a well-known result in topological combinatorics. In this paper, we present a combinatorial proof for the Alishahi-Hajiabolhassan theorem. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005