Glucose Oxidase Catalyzed Self-Assembly of Bioelectroactive Gold Nanostructures
نویسندگان
چکیده
Glucose oxidase catalyzes the formation of metallic gold particles in immediate proximity of the protein from gold (III) chloride in the absence of any other catalytic or reductive substrates. The protein-mediated gold reduction reaction leads to size-controllable gold particle formation and concomitant association of the enzyme in an electrically conductive metallic template. Such an enzyme immobilization strategy provides a simple and rapid method to create an intimate interface between glucose oxidase and a conductive matrix, which can be joined to an electrode surface. Model electrodes were prepared by entraining the glucose oxidase/gold particles onto carbon paper. Voltammetry of the resulting electrodes revealed stable oxidation and reduction peaks at a potential close to that of the standard value for the FAD/ FADH2 cofactor of immobilized glucose oxidase. The gold electrodes exhibit catalytic activity in the presence of glucose confirming the entrapment of active glucose oxidase within the gold architecture. The resulting composite material can be successfully integrated with electrodes of various designs for biosensor and biofuel cell applications.
منابع مشابه
Versatile multi-functionalization of protein nanofibrils for biosensor applications.
Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils...
متن کاملEngineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly
The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...
متن کاملCharacterization of oxidoreductase–redox polymer electrostatic film assembly on gold by surface plasmon resonance spectroscopy and Fourier transform infrared–external reflection spectroscopy
The electrostatic assembly of nanocomposite thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes, glucose oxidase (GOX), lactate oxidase (LOX) and pyruvate oxidase (PYX), was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, fol...
متن کاملLayer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD w...
متن کاملEnzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection.
Gold nanorods (AuNRs) have become some of the most used nanostructures for biosensing and imaging applications due to their plasmon-related optical response, which is highly sensitive toward minute changes in the AuNR aspect ratio. In this context, H2O2 has been used to trigger the chemical etching of AuNRs, thereby inducing a decrease of their aspect ratio. However, special conditions and rela...
متن کامل