Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water
نویسندگان
چکیده
BACKGROUND Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. RESULTS In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga, were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium. CONCLUSIONS The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other crude oil-waste-related bioengineering studies, such as bioaugmentation and bioremediation.
منابع مشابه
Immunological impacts of oil sands-affected waters on rainbow trout evaluated using an in situ exposure.
Rainbow trout were exposed in situ to oil sands-affected waters for 21 d, either with or without an immune stimulation using inactivated Aeromonas salmonicida. Three aquatic systems were utilized for the experiment: a pond containing oil sands tailings capped with approximately 3 m of natural surface water, a second pond where unextracted oil sands materials were deposited in the watershed, and...
متن کاملBenzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond
Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of b...
متن کاملTransport of Polycyclic Aromatic Hydrocarbons in a Calcareous Wetland Soil
Knowledge of transport and degradation of polycyclic aromatic hydrocarbons (PAHs) is important in assessing PAH contamination of soils and water resources. The transport of naphthalene, anthracene, pyrene and phenanthrene was determined in a contaminated calcareous soil obtained from the Shadegan wetland (Khozestan, Iran) considering a column study in laboratory conditions. The PAHs were added ...
متن کاملTime Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformat...
متن کاملEvidence of low toxicity of oil sands process-affected water to birds invites re-evaluation of avian protection strategies
Exposure to water containing petroleum waste products can generate both overt and subtle toxicological responses in wildlife, including birds. Such exposure can occur in the tailings ponds of the mineable oil sands, which are located in Alberta, Canada, under a major continental flyway for waterfowl. Over the 40 year history of the industry, a few thousand bird deaths have been reported followi...
متن کامل