Evaluation of generalized Mittag-Leffler functions on the real line
نویسندگان
چکیده
This paper addresses the problem of the numerical computation of generalized Mittag–Leffler functions with two parameters, with applications in fractional calculus. The inversion of their Laplace transform is an effective tool in this direction; however, the choice of the integration contour is crucial. Here parabolic contours are investigated and combined with quadrature rules for the numerical integration. An in–depth error analysis is carried out to select suitable contour’s parameters, depending on the parameters of the Mittag– Leffler function, in order to achieve any fixed accuracy. We present numerical experiments to validate theoretical results and some computational issues are discussed.
منابع مشابه
Autoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملMatrix Mittag-Leffler functions of fractional nabla calculus
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
متن کاملSolutions of Fractional Reaction-diffusion Equations in Terms of Mittag-leffler Functions
Abstract. This paper deals with the solution of unified fractional reactiondiffusion systems. The results are obtained in compact and elegant forms in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. On account of the most general character of the derived results, numerous results on fractional reaction, fractional diffusi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 39 شماره
صفحات -
تاریخ انتشار 2013