Coexistence and competition of sulfate-reducing and methanogenic populations in an anaerobic hexadecane-degrading culture
نویسندگان
چکیده
BACKGROUND Over three-fifths of the world's known crude oil cannot be recovered using state-of-the-art techniques, but microbial conversion of petroleum hydrocarbons trapped in oil reservoirs to methane is one promising path to increase the recovery of fossil fuels. The process requires cooperation between syntrophic bacteria and methanogenic archaea, which can be affected by sulfate-reducing prokaryotes (SRPs). However, the effects of sulfate on hydrocarbon degradation and methane production remain elusive, and the microbial communities involved are not well understood. RESULTS In this study, a methanogenic hexadecane-degrading enrichment culture was treated with six different concentrations of sulfate ranging from 0.5 to 25 mM. Methane production and maximum specific methane production rate gradually decreased to 44 and 56% with sulfate concentrations up to 25 mM, respectively. There was a significant positive linear correlation between the sulfate reduction/methane production ratio and initial sulfate concentration, which remained constant during the methane production phase. The apparent methanogenesis fractionation factor (αapp) gradually increased during the methane production phase in each treatment, the αapp for the treatments with lower sulfate (0.5-4 mM) eventually plateaued at ~1.047, but that for the treatment with 10-25 mM sulfate only reached ~1.029. The relative abundance levels of Smithella and Methanoculleus increased almost in parallel with the increasing sulfate concentrations. Furthermore, the predominant sulfate reducer communities shifted from Desulfobacteraceae in the low-sulfate cultures to Desulfomonile in the high-sulfate cultures. CONCLUSION The distribution of hexadecane carbon between methane-producing and sulfate-reducing populations is dependent on the initial sulfate added, and not affected during the methane production period. There was a relative increase in hydrogenotrophic methanogenesis activity over time for all sulfate treatments, whereas the total activity was inhibited by sulfate addition. Both Smithella and Methanoculleus, the key alkane degraders and methane producers, can adapt to sulfate stress. Specifically, different SRP populations were stimulated at various sulfate concentrations. These results could help to evaluate interactions between sulfate-reducing and methanogenic populations during anaerobic hydrocarbon degradation in oil reservoirs.
منابع مشابه
Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA).
Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C(18:1), unsaturated LCFA) or palmitate (C(16:0), saturated LCFA), was studied by denaturing g...
متن کاملIsolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electro...
متن کاملDraft Genome Sequence of Uncultivated Firmicutes (Peptococcaceae SCADC) Single Cells Sorted from Methanogenic Alkane-Degrading Cultures
The draft genome of an uncultivated bacterium affiliated with the Peptococcaceae was reconstructed by co-assembling Illumina MiSeq sequences from three single cells sorted by microfluidics from two methanogenic alkane-degrading cultures. Peptococcaceae SCADC (short-chain alkane-degrading culture) may be genetically capable of anaerobic alkane activation by fumarate addition in the absence of su...
متن کاملAnaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
Although polycyclic aromatic hydrocarbons (PAHs) have usually been found to persist under strict anaerobic conditions, in a previous study an unusual site was found in San Diego Bay in which two PAHs, naphthalene and phenanthrene, were oxidized to carbon dioxide under sulfate-reducing conditions. Further investigations with these sediments revealed that methylnaphthalene, fluorene, and fluorant...
متن کاملIdentification and expression of benzylsuccinate synthase genes in a toluene-degrading methanogenic consortium.
Benzylsuccinate synthase (BSS) initiates anaerobic toluene biodegradation, and BSS genes have been found in several nitrate- and iron-reducing organisms. Here, two new putative bssA genes were identified in a methanogenic toluene-degrading culture. Transcription was upregulated with toluene but not with benzoate, consistent with the proposed function. These are the first bss sequences from a me...
متن کامل