Evolution of Susceptibility to Ingested Double-Stranded RNAs in Caenorhabditis Nematodes
نویسندگان
چکیده
BACKGROUND The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs) and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus. PRINCIPAL FINDINGS We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species. CONCLUSIONS The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies.
منابع مشابه
Double-stranded RNA-dependent ATPase DRH-3
RNA helicases are proteins essential to almost every facet of RNA metabolism, including the gene-silencing pathways that employ small RNAs. A phylogenetically related group of helicases is required for the RNA-silencing mechanism in Caenorhabditis elegans. Dicer-related helicase 3 (DRH-3) is a Dicer-RIG-I family protein that is essential for RNA silencing and germline development in nematodes. ...
متن کاملDouble-stranded RNA-dependent ATPase DRH-3 INSIGHT INTO ITS ROLE IN RNA SILENCING IN CAENORHABDITIS ELEGANS*□
RNA helicases are proteins essential to almost every facet of RNA metabolism, including the gene-silencing pathways that employ small RNAs. A phylogenetically related group of helicases is required for the RNA-silencingmechanism inCaenorhabditis elegans. Dicer-related helicase 3 (DRH-3) is a DicerRIG-I family protein that is essential for RNA silencing and germline development in nematodes. Her...
متن کاملMinireview RNA interference in nematodes and the chance that favored Sydney
RNA interference (RNAi), the inactivation of gene expression by double-stranded (ds) RNA, has become a major method of gene inactivation in the past ten years. The fact that the trigger for RNAi is composed of dsRNA was discovered in the nematode worm Caenorhabditis elegans [1]. This gene-inactivation method is far from being applicable to all nematodes, however, especially in the external appl...
متن کاملRNAi Effector Diversity in Nematodes
While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or t...
متن کاملSpecific RNA Interference in Caenorhabditis elegans by Ingested dsRNA Expressed in Bacillus subtilis
In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli ...
متن کامل