A Framework for Conditioning Uncertain Relational Data

نویسندگان

  • Ruiming Tang
  • Reynold Cheng
  • Huayu Wu
  • Stéphane Bressan
چکیده

We propose a framework for representing conditioned probabilistic relational data. In this framework the existence of tuples in possible worlds is determined by Boolean expressions composed from elementary events. The probability of a possible world is computed from the probabilities associated with these elementary events. In addition, a set of global constraints conditions the database. Conditioning is the formalization of the process of adding knowledge to a database. Some worlds may be impossible given the constraints and the probabilities of possible worlds are accordingly re-defined. The new constraints can come from the observation of the existence or non-existence of a tuple, from the knowledge of a specific rule, such as the existence of an exclusive set of tuples, or from the knowledge of a general rule, such as a functional dependency. We are therefore interested in computing a concise representation of the possible worlds and their respective probabilities after the addition of new constraints, namely an equivalent probabilistic database instance without constraints after conditioning. We devise and present a general algorithm for this computation. Unfortunately, the general problem involves the simplification of general Boolean expressions and is NP-hard. We therefore identify specific practical families of constraints for which we devise and present efficient algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

A Bayesian Framework for Modifications of Probabilistic Relational Data

The inherent uncertainty pervasive over the real world often forces business decisions to be made using uncertain data. The conventional relational model does not have the ability to handle uncertain data. In recent years, several approaches have been proposed in the literature for representing uncertain data by extending the relational model, primarily using probability theory. However, the as...

متن کامل

Project Risk Assessment Framework

This study presents a framework for calculating the risk of various projects, especially projects under uncertain circumstances. First, the related literature is reviewed and then the relationship between risk and projects is examined. Using a case study an approach is provided to determine the project risk in uncertain circumstances where sufficient data is not available for decision-making. I...

متن کامل

$Υ$-DB: A system for data-driven hypothesis management and analytics

The vision of Υ-DB introduces deterministic scientific hypotheses as a kind of uncertain and probabilistic data, and opens some key technical challenges for enabling data-driven hypothesis management and analytics. The Υ-DB system addresses those challenges throughout a design-by-synthesis pipeline that defines its architecture. It processes hypotheses from their XML-based extraction to encodin...

متن کامل

Project Risk Assessment Framework

This study presents a framework for calculating the risk of various projects, especially projects under uncertain circumstances. First, the related literature is reviewed and then the relationship between risk and projects is examined. Using a case study an approach is provided to determine the project risk in uncertain circumstances where sufficient data is not available for decision-making. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012