Brain Surface Conformal Parameterization

نویسندگان

  • Yalin Wang
  • Xianfeng Gu
  • Kiralee M. Hayashi
  • Tony F. Chan
  • Paul M. Thompson
  • Shing-Tung Yau
چکیده

Yalin Wang Mathematics Department, UCLA email: [email protected] Xianfeng Gu Computer Science Department SUNY at Stony Brook emai: [email protected] Kiralee M. Hayashi Laboratory of Neuro Imaging UCLA School of Medicine email: [email protected] Tony F. Chan Mathematics Department, UCLA email: [email protected] Paul M. Thompson Laboratory of Neuro Imaging UCLA School of Medicine email: [email protected] Shing-Tung Yau Department of Mathematics Harvard University email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Brain Conformal Mapping and Landmarks: A Variational Approach

To compare and integrate brain data, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Since the cortical surface of the brain is a genus zero surface, conformal mapping offers a convenient method to param...

متن کامل

Brain Surface Conformal Parameterization with Algebraic Functions

In medical imaging, parameterized 3D surface models are of great interest for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on algebraic functions. By solving the Yamabe equation with the Ricci flow method, we can conformally map a brain surface to a multi-hole di...

متن کامل

Brain Surface Conformal Parameterization with Algebraic Functions

In medical imaging, parameterized 3D surface models are of great interest for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on algebraic functions. By solving the Yamabe equation with the Ricci flow method, we can conformally map a brain surface to a multi-hole di...

متن کامل

Conformal Surface Parameterization Using Euclidean Ricci Flow

Surface parameterization is a fundamental problem in graphics. Conformal surface parameterization is equivalent to finding a Riemannian metric on the surface, such that the metric is conformal to the original metric and induces zero Gaussian curvature for all interior points. Ricci flow is a theoretic tool to compute such a conformal flat metric. This paper introduces an efficient and versatile...

متن کامل

Landmark constrained genus zero surface conformal mapping and its application to brain mapping research

In order to compare and integrate brain data more effectively, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Cortical surface is a genus zero surface. Therefore, conformal mapping offers a convenient m...

متن کامل

Conformal Slit Mapping and Its Applications to Brain Surface Parameterization

We propose a method that computes a conformal mapping from a multiply connected mesh to the so-called slit domain, which consists of a canonical rectangle or disk in which 3D curved landmarks on the original surfaces are mapped to concentric or parallel lines in the slit domain. In this paper, we studied its application to brain surface parameterization. After cutting along some landmark curve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005