Constraint Projections for Ensemble Learning
نویسندگان
چکیده
It is well-known that diversity among base classifiers is crucial for constructing a strong ensemble. Most existing ensemble methods obtain diverse individual learners through resampling the instances or features. In this paper, we propose an alternative way for ensemble construction by resampling pairwise constraints that specify whether a pair of instances belongs to the same class or not. Using pairwise constraints for ensemble construction is challenging because it remains unknown how to influence the base classifiers with the sampled pairwise constraints. We solve this problem with a twostep process. First, we transform the original instances into a new data representation using projections learnt from pairwise constraints. Then, we build the base classifiers with the new data representation. We propose two methods for resampling pairwise constraints following the standard Bagging and Boosting algorithms, respectively. Extensive experiments validate the effectiveness of our method.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملComment on "Ensemble Projection for Semi-supervised Image Classification"
Abstract—In a series of papers by Dai and colleagues [1], [2], a feature map (or kernel) was introduced for semiand unsupervised learning. This feature map is build from the output of an ensemble of classifiers trained without using the ground-truth class labels. In this critique, we analyze the latest version of this series of papers, which is called Ensemble Projections [2]. We show that the ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل