Freiman's theorem for solvable groups
نویسنده
چکیده
Freiman’s theorem asserts, roughly speaking, if that a finite set in a torsion-free abelian group has small doubling, then it can be efficiently contained in (or controlled by) a generalised arithmetic progression. This was generalised by Green and Ruzsa to arbitrary abelian groups, where the controlling object is now a coset progression. We extend these results further to solvable groups of bounded derived length, in which the coset progressions are replaced by the more complicated notion of a “coset nilprogression”. As one consequence of this result, any subset of such a solvable group of small doubling is is controlled by a set whose iterated products grow polynomially, and which are contained inside a virtually nilpotent group. As another application we establish a strengthening of the Milnor-Wolf theorem that all solvable groups of polynomial growth are virtually nilpotent, in which only one large ball needs to be of polynomial size. This result complements recent work of BreulliardGreen, Fisher-Katz-Peng, and Sanders.
منابع مشابه
On non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملSome connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملNILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
متن کاملRepresentations of Fundamental Groups of Compact Kähler Manifolds in Solvable Matrix Groups
In the paper we prove a factorization theorem for representations of fundamental groups of compact Kähler manifolds (Kähler groups) into solvable matrix groups. We apply this result to prove that the universal covering of a compact Kähler manifold with a residually solvable fundamental group is holomorphically convex.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Contributions to Discrete Mathematics
دوره 5 شماره
صفحات -
تاریخ انتشار 2010