Pioglitazone attenuates endotoxin-induced acute lung injury by reducing neutrophil recruitment.

نویسندگان

  • Jochen Grommes
  • Mathias Mörgelin
  • Oliver Soehnlein
چکیده

Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Activation and recruitment of neutrophils are regarded as key mechanisms in the progression of ALI. As pioglitazone holds potent pleiotropic anti-inflammatory effects, we explored its effects during ALI. C57Bl/6 mice were exposed to aerosolised lipopolysaccharides (LPSs) (500 μg·mL(-1)) and their alveolar, interstitial and intravascular neutrophils were assessed 4 h later. Lung permeability changes were evaluated by fluorescein isothiocyanate-dextran clearance and protein content in the bronchoalveolar lavage fluid. In vitro, human isolated neutrophils were pretreated with piolitazone (10 μM, for 1 or 3 h) and then activated with N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Neutrophil activation, adhesion, release and formation of reactive oxygen species (ROS) and phagocytosis were measured thereafter. Pioglitazone treatment before or after induction of ALI significantly diminished alveolar (reduction by 73% and 67%, respectively) and interstitial neutrophil influx (reduction by 55% and 63%, respectively) and reduced lung permeability changes (reduction by 64% and 58%, respectively) indicating a protective role of pioglitazone treatment in ALI. Moreover, pioglitazone significantly reduced degranulation and adhesion of neutrophils without affecting ROS formation and release or bacterial phagocytosis. Pioglitazone reduces recruitment and activation of neutrophils thereby preventing LPS-induced ALI. Our results imply a potential role for pioglitazone treatment in the management of ALI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypercapnic acidosis attenuates endotoxin-induced acute lung injury.

Deliberate induction of prophylactic hypercapnic acidosis protects against lung injury after in vivo ischemia-reperfusion and ventilation-induced lung injury. However, the efficacy of hypercapnic acidosis in sepsis, the commonest cause of clinical acute respiratory distress syndrome, is not known. We investigated whether hypercapnic acidosis--induced by adding CO2 to inspired gas--would be prot...

متن کامل

Therapeutic inhibition of CXCR2 by Reparixin attenuates acute lung injury in mice.

BACKGROUND AND PURPOSE Acute lung injury (ALI) remains a major challenge in critical care medicine. Both neutrophils and chemokines have been proposed as key components in the development of ALI. The main chemokine receptor on neutrophils is CXCR2, which regulates neutrophil recruitment and vascular permeability, but no small molecule CXCR2 inhibitor has been demonstrated to be effective in ALI...

متن کامل

Protective effects of isoflurane pretreatment in endotoxin-induced lung injury.

BACKGROUND The concept of antiinflammatory effects of volatile anesthetics is well established in vitro and in some organ systems. Their protective role in lung injury, however, remains to be elucidated. The authors hypothesized that in the lung, isoflurane pretreatment may attenuate neutrophil infiltration and reduce endotoxin-induced injury. METHODS Male C57Bl/6 mice were exposed to aerosol...

متن کامل

Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury

BACKGROUND Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Recruitment of neutrophils into the lungs, regarded as a key mechanism in progression of ALI, depends on signaling between neutrophils and platelets. Consequently we explored the effect of platelet-targeted aspirin and tirofiban treatment in endotoxin induced acute lung injury. METHODS C57B...

متن کامل

Pyrrolidine dithiocarbamate attenuates endotoxin-induced acute lung injury.

Lung injury in the acute respiratory distress syndrome (ARDS) is in part due to polymorphonuclear leukocyte (PMN)-mediated oxidative tissue damage. By means of nuclear factor-kappaB (NF-kappaB) activation, oxidants may also induce several genes implicated in the inflammatory response. The dithiocarbamates are antioxidants with potent inhibitory effects on NF-kappaB. We postulated that the pyrro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2012