Gale crater: the Mars Science Laboratory/ Curiosity Rover Landing Site
نویسنده
چکیده
Gale crater formed from an impact on Mars *3.6 billion years ago. It hosts a central mound nearly 100 km wide and *5 km high, consisting of layered rocks with a variety of textures and spectral properties. The oldest exposed layers contain variably hydrated sulphates and smectite clay minerals, implying an aqueous origin, whereas the younger layers higher on themound are covered by amantle of dust. Fluvial channels carved into the crater walls and the lower mound indicate that surface liquids were present during and after deposition of themoundmaterial. Numerous hypotheses have been advocated for the origin of some or all minerals and layers in the mound, ranging from deep lakes to playas to mostly dry dune fields to airfall dust or ash subjected to only minor alteration driven by snowmelt. The complexity of the mound suggests that multiple depositional and diagenetic processes are represented in the materials exposed today. Beginning in August 2012, the Mars Science Laboratory rover Curiosity will explore Gale crater by ascending the mound’s northwestern flank, providing unprecedented new detail on the evolution of environmental conditions and habitability over many millions of years during which the mound strata accumulated. Received 30 June 2012, accepted 27 July 2012, first published online 24 September 2012
منابع مشابه
Evidence for a Global Martian Soil Composition Extends to Gale Crater
Introduction: The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a ...
متن کاملModeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse
Gale Crater, the Mars Science Laboratory (MSL) landing site, contains a central mound, named Aeolis Mons (informally Mount Sharp) that preserves 5 km of sedimentary stratigraphy. Formation scenarios include (1) complete filling of Gale Crater followed by partial sediment removal or (2) building of a central deposit with morphology controlled by slope winds and only incomplete sedimentary fill. ...
متن کاملGround Truth Assessment of the Gale Crater Region Using Mars Science Laboratory Data for Characterization of Potential Human Mission Landing Site and in Situ Resource Utilization
Introduction: Instruments and cameras on board the Mars Science Laboratory (MSL) rover give ground truth information on chemistry, terrain, and atmospheric characteristics of the rover's traverse to Mount Sharp in the center of Gale crater. Analysis of this unique and robust data set allows for a thought experiment to determine the ability of a future robotics-assisted human mission to survive ...
متن کاملSharad Sounding and Surface Roughness of Once and Future Mars Landing Sites
Introduction: To search for subsurface interfaces and characterize surface roughness, the Shallow Radar (SHARAD) instrument on the Mars Reconnaissance Orbiter is observing past, present, and proposed future Martian landing sites. Orbital and landed imagery and altimetry data show that most sites are located atop layered sequences that extend over tens to hundreds of kilometers and are hundreds ...
متن کاملTerrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater
Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover...
متن کامل