Boundary Interpolation by Finite Blaschke Products
نویسندگان
چکیده
Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. We present two methods for constructing our Blaschke products: one reminiscent of Lagrange’s interpolation method and the second reminiscent of Newton’s method. We show that locating the zeroes of our Blaschke product is related to another fascinating problem in complex analysis: the Sendov conjecture. We use this fact to obtain estimates on the location of the zeroes of the Blaschke product.
منابع مشابه
A Uniqueness Result on Boundary Interpolation
Let f be an analytic function mapping the unit disk D into itself. We give necessary and sufficient conditions on the local behavior of f near a finite set of boundary points that require f to be a finite Blaschke product.
متن کاملInterpolating Blaschke Products and Angular Derivatives
We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H∞[b : b has finite angular derivative everywhere]. We study the most well-known example of a Blaschke product with infinite angular deriva...
متن کاملCircle Packings in the Unit Disc
A Bl-packing is a (branched) circle packing that “properly covers” the unit disc. We establish some fundamental properties of such packings. We give necessary and sufficient conditions for their existence, prove their uniqueness, and show that their underlying surfaces, known as carriers, are quasiconformally equivalent to surfaces of classical Blaschke products. We also extend the approximatio...
متن کاملBoundary Rigidity for Some Classes of Meromorphic Functions
Let f be a function meromorphic on the open unit disk D, with angular boundary limits bounded by one in modulus almost everywhere on the unit circle. We give sufficient conditions in terms of boundary asymptotics at finitely many points on the unit circle T for f to be a ratio of two finite Blaschke products. A necessary condition is that f has finitely many poles in D, i.e., that f is a genera...
متن کاملar X iv : 1 51 2 . 05 44 4 v 2 [ m at h . C V ] 7 J ul 2 01 6 FINITE BLASCHKE PRODUCTS : A SURVEY
A finite Blaschke product is a product of finitely many automorphisms of the unit disk. This brief survey covers some of the main topics in the area, including characterizations of Blaschke products, approximation theorems, derivatives and residues of Blaschke products, geometric localization of zeros, and selected other topics.
متن کامل