Boundary Interpolation by Finite Blaschke Products

نویسندگان

  • PAMELA GORKIN
  • ROBERT C. RHOADES
چکیده

Given 2n distinct points z1, z′ 1, z2, z ′ 2, . . . , zn, z ′ n (in this order) on the unit circle, and n points w1, . . . , wn on the unit circle, we show how to construct a Blaschke product B of degree n such that B(zj) = wj for all j and, in addition, B(z′ j) = B(z ′ k) for all j and k. Modifying this example yields a Blaschke product of degree n− 1 that interpolates the zj ’s to the wj ’s. We present two methods for constructing our Blaschke products: one reminiscent of Lagrange’s interpolation method and the second reminiscent of Newton’s method. We show that locating the zeroes of our Blaschke product is related to another fascinating problem in complex analysis: the Sendov conjecture. We use this fact to obtain estimates on the location of the zeroes of the Blaschke product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniqueness Result on Boundary Interpolation

Let f be an analytic function mapping the unit disk D into itself. We give necessary and sufficient conditions on the local behavior of f near a finite set of boundary points that require f to be a finite Blaschke product.

متن کامل

Interpolating Blaschke Products and Angular Derivatives

We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H∞[b : b has finite angular derivative everywhere]. We study the most well-known example of a Blaschke product with infinite angular deriva...

متن کامل

Circle Packings in the Unit Disc

A Bl-packing is a (branched) circle packing that “properly covers” the unit disc. We establish some fundamental properties of such packings. We give necessary and sufficient conditions for their existence, prove their uniqueness, and show that their underlying surfaces, known as carriers, are quasiconformally equivalent to surfaces of classical Blaschke products. We also extend the approximatio...

متن کامل

Boundary Rigidity for Some Classes of Meromorphic Functions

Let f be a function meromorphic on the open unit disk D, with angular boundary limits bounded by one in modulus almost everywhere on the unit circle. We give sufficient conditions in terms of boundary asymptotics at finitely many points on the unit circle T for f to be a ratio of two finite Blaschke products. A necessary condition is that f has finitely many poles in D, i.e., that f is a genera...

متن کامل

ar X iv : 1 51 2 . 05 44 4 v 2 [ m at h . C V ] 7 J ul 2 01 6 FINITE BLASCHKE PRODUCTS : A SURVEY

A finite Blaschke product is a product of finitely many automorphisms of the unit disk. This brief survey covers some of the main topics in the area, including characterizations of Blaschke products, approximation theorems, derivatives and residues of Blaschke products, geometric localization of zeros, and selected other topics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006