Moduli spaces of local G-shtukas

نویسنده

  • Eva Viehmann
چکیده

We give an overview of the theory of local G-shtukas and their moduli spaces that were introduced in joint work of U. Hartl and the author, and in the past years studied by many people. We also discuss relations to moduli of global G-shtukas, properties of their special fiber through affine Deligne-Lusztig varieties and of their generic fiber, such as the period map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

ar X iv : m at h / 03 11 14 9 v 4 [ m at h . A G ] 2 9 A pr 2 00 6 MODULI SPACES OF LOCAL SYSTEMS AND HIGHER TEICHMÜLLER THEORY

LetG be a split semisimple algebraic group over Qwith trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivia...

متن کامل

Local Properties of Good Moduli Spaces

We study the local properties of Artin stacks and their good moduli spaces, if they exist. We show that near closed points with linearly reductive stabilizer, Artin stacks formally locally admit good moduli spaces. We also give conditions for when the existence of good moduli spaces can be deduced from the existence of étale charts admitting good moduli spaces.

متن کامل

The Newton stratification on deformations of local G-shtuka

Bounded local G-shtuka are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine DeligneLusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-sh...

متن کامل

The Affine Grassmannian

The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form BunG(X), where X is an algebraic curve and G is an algebraic group. There is a sense in which it describes the local geometry of such moduli spaces. I’ll describe the affine Grassmannian as a moduli space, and construct it concretely for some concrete groups. References, including the constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018