Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of mycobacterium strain JS60.

نویسندگان

  • Nicholas V Coleman
  • Jim C Spain
چکیده

Mycobacterium strains that grow on ethene and vinyl chloride (VC) are widely distributed in the environment and are potentially useful for biocatalysis and bioremediation. The catabolic pathway of alkene assimilation in mycobacteria is not well characterized. It is clear that the initial step is a monooxygenase-mediated epoxidation that produces epoxyethane from ethene and chlorooxirane from VC, but the enzymes involved in subsequent transformation of the epoxides have not been identified. We investigated epoxyethane metabolism in Mycobacterium strain JS60 and discovered a coenzyme M (CoM)-dependent enzyme activity in extracts from VC- and ethene-grown cells. PCR amplifications using primers targeted at epoxyalkane:CoM transferase (EaCoMT) genes yielded part of the JS60 EaCoMT gene, which was used to clone an 8.4-kb genomic DNA fragment. The complete EaCoMT gene (etnE) was recovered, along with genes (etnABCD) encoding a four-component monooxygenase and two genes possibly involved in acyl-CoA ester metabolism. Reverse transcription-PCR indicated that the etnE and etnA genes were cotranscribed and inducible by ethene and VC. Heterologous expression of the etnE gene in Mycobacterium smegmatis mc(2)155 using the pMV261 vector gave a recombinant strain capable of transforming epoxyethane, epoxypropane, and chlorooxirane. A metabolite identified by mass spectrometry as 2-hydroxyethyl-CoM was produced from epoxyethane. The results indicate that the EaCoMT and monooxygenase enzymes encoded by a single operon (etnEABCD) catalyze the initial reactions in both the VC and ethene assimilation pathways. CoM-mediated reactions appear to be more widespread in bacteria than was previously believed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains.

An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extrac...

متن کامل

Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD.

The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.

متن کامل

Association of missense mutations in epoxyalkane coenzyme M transferase with adaptation of Mycobacterium sp. strain JS623 to growth on vinyl chloride.

Vinyl chloride (VC) is a toxic groundwater pollutant associated with plastic manufacture and chlorinated solvent use. Aerobic bacteria that grow on VC as a carbon and energy source can evolve in the laboratory from bacteria that grow on ethene, but the genetic changes involved are unknown. We investigated VC adaptation in two variants (JS623-E and JS623-T) of the ethene-oxidizing Mycobacterium ...

متن کامل

Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites.

Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve dif...

متن کامل

Identification of polypeptides expressed in response to vinyl chloride, ethene, and epoxyethane in Nocardioides sp. strain JS614 by using peptide mass fingerprinting.

Enzymes expressed in response to vinyl chloride, ethene, and epoxyethane by Nocardioides sp. strain JS614 were identified by using a peptide mass fingerprinting (PMF) approach. PMF provided insight concerning vinyl chloride biodegradation in strain JS614 and extends the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry as a tool to enhance characterization of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 18  شماره 

صفحات  -

تاریخ انتشار 2003