Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine.
نویسندگان
چکیده
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2(-/-) mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2(-/-) compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2(-/-) mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL.
منابع مشابه
Bile acids: regulation of synthesis.
Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important ...
متن کاملRole of Nrf2 in the alteration of cholesterol and bile acid metabolism-related gene expression by dietary cholesterol in high fat-fed mice
Nuclear factor-E2-related factor 2 (Nrf2) is a regulator of lipid metabolism as well as various cytoprotective enzymes and may be involved in the pathogenesis of non-alcoholic fatty liver disease. Although, bile acids affect lipid metabolism, the role of Nrf2 in bile acid metabolism remains unclear. In this study, it was tested how Nrf2 modulates lipid and bile acid homeostasis in liver in resp...
متن کاملHuangqi Decoction Alleviates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis by Reversing Disordered Bile Acid and Glutathione Homeostasis in Mice
Intrahepatic cholestasis is a serious symptom of liver disorders with limited therapies. In this study, we investigated the efficacy of Huangqi decoction (HQD), a two-herb classic traditional Chinese medicine (TCM), in the treatment of alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. HQD treatment ameliorated impaired hepatic function and tissue damage. A metabolomi...
متن کاملpatient-oriented and epidemiological research Reduced ileal expression of OSTa-OSTb in non-obese gallstone disease
Cholelithiasis is a multifactorial process, and several mechanisms have been postulated. A decreased expression of the ileal apical sodium-dependent bile acid transporter (ASBT) and of the cytosolic ileal lipid binding protein (ILBP) was recently described in female non-obese patients. The role of the recently identified organic solute transporters a and b (OSTa, OSTb) in gallstone pathogenesis...
متن کاملOst -Ost is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver
Ballatori N, Fang F, Christian WV, Li N, Hammond CL. Ost -Ost is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am J Physiol Gastrointest Liver Physiol 295: G179–G186, 2008. First published May 22, 2008; doi:10.1152/ajpgi.90319.2008.—Mice deficient in the organic solute transporter (Ost)subunit of the heteromeric organic solute and steroid transpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 302 9 شماره
صفحات -
تاریخ انتشار 2012