Engineered high aspect ratio vertical nanotubes as a model system for the investigation of catalytic methanol synthesis over Cu/ZnO.
نویسندگان
چکیده
Catalytically synthesized methanol from H2 and CO2 using porous Cu/ZnO aggregates is a promising, carbon neutral, and renewable alternative to replace fossil fuel based transport fuels. However, the absence of surface-engineered model systems to understand and improve the industrial Cu/ZnO catalyst poses a big technological gap in efforts to increase industrial methanol conversion efficiency. In this work, we report a novel process for the fabrication of patterned, vertically aligned high aspect ratio 1D nanostructures on Si that can be used as an engineered model catalyst. The proposed strategy employs near-field phase shift lithography (NF-PSL), deep reactive ion etching (DRIE), and atomic layer deposition (ALD) to pattern, etch, and coat Si wafers to produce high aspect ratio 1D nanostructures. Using this method, we produced a model system consisting of high aspect ratio Cu-decorated ZnO nanotubes (NTs) to investigate the morphological effects of ZnO catalyst support in comparison to the planar Cu/ZnO catalyst in terms of the catalytic reactions. The engineered catalysts performed 70 times better in activating CO2 than the industrial catalyst. In light of the obtained results, several important points are highlighted, and recommendations are made to achieve higher catalytic performance.
منابع مشابه
Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis.
Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metal-organic Cu precursor [Cu{(OCH(CH(3))CH(2)N(CH(3))(2))}(2)] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) ...
متن کاملTheoretical study of catalytic reduction of CO2 with H20 by BOC-MP method
Bond-Order Conservation-Morse Potential (BOC-MP) method is used to carry out the calculationon the CO2+ H20 system. One of the best catalysts for methanol synthesis in catalytic reductionof CO2 with H2O is Cu/ZnO/A1203 whose surface is supported by with some amount of Pd orGa. Reduction of CO2 with H20 on Cu will result in methanol formation; while on Ni will lead tomethane formation. In the me...
متن کاملDME Synthesis over MSU-S Catalyst through Methanol Dehydration Reaction
MSU-S mesoporous catalyst with [SiO2]/[Al2O3] ratio of 55 was synthesized using tetrapropylammonium hydroxide (TPAOH) as a structure directing agent and hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The catalytic activity of the calcined sample was evaluated for the dehydration of methanol to dimethyl ether (DME) in a vertical fixed bed microreactor...
متن کاملCatalytic production of biodiesel from corn oil by metal-mixed oxides
The present study investigates the transesterification of corn oil with methanol over two oxides of MgO and ZnO at 65 ͦC and 1 atm. These two catalysts have been prepared via a conventional co-precipitation process. As for MgO, the corresponding mixed metal nitrate solution has been mixed and heated at the presence of urea. ZnO has also been synthesized by co-precipitation of metal acetate at th...
متن کاملCatalytic production of biodiesel from corn oil by metal-mixed oxides
The present study investigates the transesterification of corn oil with methanol over two oxides of MgO and ZnO at 65 ͦC and 1 atm. These two catalysts have been prepared via a conventional co-precipitation process. As for MgO, the corresponding mixed metal nitrate solution has been mixed and heated at the presence of urea. ZnO has also been synthesized by co-precipitation of metal acetate at th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2014