Fourth-order and Optimised Finite Difference Schemes for the 2-d Wave Equation

نویسندگان

  • Brian Hamilton
  • Stefan Bilbao
چکیده

This paper investigates some fourth-order accurate explicit finite difference schemes for the 2-D wave equation obtained using 13-, 17-, 21-, and 25-point discrete Laplacians. Optimisation is conducted in order to minimise numerical dispersion and computational costs. New schemes are presented that are more computationally efficient than nine-point explicit schemes at maintaining less than one percent wave speed error up to some critical frequency. Simulation results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimised 25-point finite difference schemes for the three-dimensional wave equation

Wave-based methods are increasingly viewed as necessary alternatives to geometric methods for room acoustics simulations, as they naturally capture wave phenomena like diffraction and interference. For methods that simulate the three-dimensional wave equation—and thus solve for the entire acoustic field in an enclosed space—computational costs can be high, so efficient algorithms are critical. ...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

High Order Compact Finite Difference Schemes for the Helmholtz Equation with Discontinuous Coefficients

In this paper, thirdand fourth-order compact finite difference schemes are proposed for solving Helmholtz equations with discontinuous media along straight interfaces in two space dimensions. To keep the compactness of the finite difference schemes and get global high order schemes, even at the interface where the wave number is discontinuous, the idea of the immersed interface method is employ...

متن کامل

Upwind schemes for the wave equation in second-order form

We develop new high-order accurate upwind schemes for the wave equation in second-order form. These schemes are developed directly for the equations in second-order form, as opposed to transforming the equations to a first-order hyperbolic system. The schemes are based on the solution to a local Riemann-type problem that uses d’Alembert’s exact solution. We construct conservative finite differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013