Differential Fay identities and auxiliary linear problem of integrable hierarchies

نویسنده

  • Kanehisa Takasaki
چکیده

We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a generating functional expression of the full set of auxiliary linear equations, hence substantially equivalent to the integrable hierarchies themselves. These results are illustrated for the KP, Toda, BKP and DKP hierarchies. As a byproduct, we point out some new features of the DKP hierarchy and its dispersionless limit. The author is grateful to Takashi Takebe for collaboration. This research was partially supported by Grant-in-Aid for Scientific Research No. 16340040, No. 18340061 and No. 19540179 from the Japan Society for the Promotion of Science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Fay identities and auxiliary linear problem of integrable hiearchies

We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a ...

متن کامل

Auxiliary linear problem , difference Fay identities and dispersionless limit of Pfaff - Toda hierarchy Kanehisa Takasaki

Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff-Toda hierarchy”) . Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building b...

متن کامل

Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy

Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff–Toda hierarchy”). Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building bl...

متن کامل

On ∂-problem and integrable equations

Using the ∂-problem and dual ∂-problem , we derive bilinear relations which allows us to construct integrable hierarchies in different parametrizations, their Darboux-Bäcklund transformations and to analyze constraints for them in a very simple way. Scalar KP, BKP and CKP hierarchies are considered as examples. There are different methods to construct integrable equations and to analyze their p...

متن کامل

The Discrete Painlevé I Hierarchy

The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008