Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model.
نویسندگان
چکیده
We employ a theoretical model to calculate mechanical characteristics of macroscopic mats and fibers of single-walled carbon nanotubes. We further investigate irradiation-induced covalent bonds between nanotubes and their effects on the tensile strength of nanotube mats and fibers. We show that the stiffness and strength of the mats can be increased at least by an order of magnitude, and thus small-dose irradiation with energetic particles is a promising tool for making macroscopic nanotube materials with excellent mechanical characteristics.
منابع مشابه
Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملCharacterization of Electrical and Mechanical Properties for Coaxial Nanofibers with Poly(ethylene oxide) (PEO) Core and Multiwalled Carbon Nanotube/PEO Sheath
The present work focuses on the electrical and mechanical characterization of nanocomposite fibers having core-sheath (or bicomponent) morphologies. Owing to their unique mechanical and electrical properties, multiwalled carbon nanotubes (MWNTs) have been utilized in the nanocomposite construction. Submicron diameter nanofibers (200–300 nm) with core-sheath morphology were fabricated from a pol...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملEffect of Carbon Nanotube Geometries on Mechanical Properties of Nanocomposite Via Nanoscale Representative Volume Element
Predicting the effective elastic properties of carbon nanotube-reinforced nanocomposites is of great interest to many structural designers and engineers for improving material and configuration design in recent years. In this paper, a finite element model of a CNT composite has been developed using the Representative volume element (RVE) to evaluate the effective material properties of nanocomp...
متن کاملPhonon transport assisted by inter-tube carbon displacements in carbon nanotube mats
Thermal transport in carbon nanotube (CNT) mats, consisting of randomly networked multi-walled carbon nanotubes (MWNTs), is not as efficient as in an individual CNT because of the constrained tube-to-tube phonon transport. Through experiments and modeling, we discover that phonon transport in CNT mats is significantly improved by ion irradiation, which introduces inter-tube displacements, actin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 93 21 شماره
صفحات -
تاریخ انتشار 2004