NuSAP governs chromosome oscillation by facilitating the Kid-generated polar ejection force

نویسندگان

  • Chenyu Li
  • Chenyi Xue
  • Qiaoyun Yang
  • Boon Chuan Low
  • Yih-Cherng Liou
چکیده

In vertebrate cells, chromosomes oscillate to align precisely during metaphase. NuSAP, a microtubule-associated protein, plays a critical role in stabilizing spindle microtubules. In this study, we utilize 3D time-lapse live-cell imaging to monitor the role of NuSAP in chromosome oscillation and identify NuSAP as a novel regulator of the chromokinesin, Kid. Depletion of NuSAP significantly suppresses the amplitude and velocity of chromosome oscillation. We analyse the effects of NuSAP and Kid depletion in monopolar and bipolar cells with or without kinetochore microtubule depletion. Twelve postulated conditions are deciphered to reveal the contribution of NuSAP to the polar force generated at kinetochore microtubules and to the regulation of the polar ejection force generated by Kid, thus revealing a pivotal role of NuSAP in chromosome oscillation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microtubule-binding and coiled-coil domains of Kid are required to turn off the polar ejection force at anaphase.

Mitotic chromosomes move dynamically along the spindle microtubules using the forces generated by motor proteins such as chromokinesin Kid (also known as KIF22). Kid generates a polar ejection force and contributes to alignment of the chromosome arms during prometaphase and metaphase, whereas during anaphase, Kid contributes to chromosome compaction. How Kid is regulated and how this regulation...

متن کامل

The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles

Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific...

متن کامل

The Spindle Protein CHICA Mediates Localization of the Chromokinesin Kid to the Mitotic Spindle

Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA ...

متن کامل

The Distribution of Polar Ejection Forces Determines the Amplitude of Chromosome Directional Instability

BACKGROUND Polar ejection forces have often been hypothesized to guide directional instability of mitotic chromosomes, but a direct link has never been established. This has led, in part, to the resurgence of alternative theories. By taking advantage of extremely precise femtosecond pulsed laser microsurgery, we abruptly alter the magnitude of polar ejection forces by severing vertebrate chromo...

متن کامل

From nuclear pore to kinetochore

From nuclear pore to kinetochore uclear proteins are turning up in some odd places lately. First, the nuclear-transport factor Ran was implicated in spindle formation. Then, the mitotic checkpoint proteins Mad1 and Mad2 turned up at the nuclear pore, in a switch with the mRNA export factor hRae1, which appeared with the mitotic checkpoint protein mBUB1 at the kinetochore. Now, Belgareh et al. r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016