Arterial paclitaxel distribution and deposition.
نویسندگان
چکیده
Successful implementation of local arterial drug delivery requires transmural distribution of drug. The physicochemical properties of the applied compound, which govern its transport and tissue binding, become as important as the mode of delivery. Hydrophilic compounds distribute freely but are cleared rapidly. Hydrophobic drugs, insoluble in aqueous solutions, bind to fixed tissue elements, potentially prolonging tissue residence and biological effect. Paclitaxel is such a hydrophobic compound, with tremendous therapeutic potential against proliferative vascular disease. We hypothesized that the recent favorable preclinical data with this compound may derive in part from preferential tissue binding as a result of unique physicochemical properties. The arterial transport of paclitaxel was quantified through application ex vivo and measurement of the subsequent transmural distribution. Arterial paclitaxel deposition at equilibrium varied across the arterial wall and was everywhere greater in concentration than in the applied drug source. Permeation into the wall increased with time, from 15 minutes to 4 hours, and varied with the origin of delivery. In contrast to hydrophilic compounds, the concentration in tissue exceeds the applied concentration and the rate of transport was markedly slower. Furthermore, endovascular and perivascular paclitaxel application led to markedly differential deposition across the blood vessel wall. These data suggest that paclitaxel interacts with arterial tissue elements as it moves under the forces of diffusion and convection and can establish substantial partitioning and spatial gradients across the tissue. The complexity of paclitaxel pharmacokinetics requires in-depth investigation if this drug is to reach its full clinical potential in proliferative vascular diseases.
منابع مشابه
Thrombosis modulates arterial drug distribution for drug-eluting stents.
BACKGROUND Drug-eluting stents deliver potent compounds directly to arterial segments but can become clot laden when deployed. The question arises as to whether thrombi affect drug elution and arterial uptake. METHODS AND RESULTS Paclitaxel transport and retention were assessed in clots of different blood components. Diffusivity, affected by clot organization, is fastest in fibrin (approximat...
متن کاملPreparation of basil seed mucilage aerogels loaded with paclitaxel nanoparticles by the combination of phase inversion technique and gas antisolvent process
Objective(S): In this work, paclitaxel (PX), a promising anticancer drug, was loaded in the basil seed mucilage (BSM) aerogels by implementation of supercritical carbon dioxide (SC-CO2) technology. Then, the effects of operating conditions were studied on the PX mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE). <stron...
متن کاملSpecific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel.
Endovascular drug-eluting stents have changed the practice of medicine, and yet it is unclear how they so dramatically reduce restenosis and how to distinguish between the different formulations available. Biological drug potency is not the sole determinant of biological effect. Physicochemical drug properties also play important roles. Historically, two classes of therapeutic compounds emerged...
متن کاملMechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing
BACKGROUND The efficacy of paclitaxel-coated balloons (PCB) for restenosis prevention has been demonstrated in humans. However, the mechanism of action for sustained drug retention and biological efficacy following single-time drug delivery is still unknown. METHODS AND RESULTS The pharmacokinetic profile and differences in drug concentration (vessel surface vs arterial wall) of two different...
متن کاملMechanisms of tissue uptake and retention in zotarolimus-coated balloon therapy.
BACKGROUND Drug-coated balloons are increasingly used for peripheral vascular disease, and, yet, mechanisms of tissue uptake and retention remain poorly characterized. Most systems to date have used paclitaxel, touting its propensity to associate with various excipients that can optimize its transfer and retention. We examined zotarolimus pharmacokinetics. METHODS AND RESULTS Animal studies, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 86 8 شماره
صفحات -
تاریخ انتشار 2000