Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction
نویسندگان
چکیده
Glutamate is probably the most important excitatory neurotransmitter in the brain. The glutamate N-methyl-D-aspartate receptor (NMDAR) is a calcium-gated channel that coordinates with G protein-coupled receptors (GPCRs) to establish the efficiency of the synaptic transmission. Cross-regulation between these receptors requires the concerted activity of the histidine triad nucleotide-binding protein 1 (HINT1) and of the sigma receptor type 1 (σ1R). Essential brain functions like learning, memory formation and consolidation, mood and behavioral responses to exogenous stimuli depend on the activity of NMDARs. In this biological context, endocannabinoids are released to retain NMDAR activity within physiological limits. The efficacy of such control depends on HINT1/σ1R assisting in the physical coupling between cannabinoid type 1 receptors (CB1Rs) and NMDARs to dampen their activity. Subsequently, the calcium-regulated HINT1/σ1R protein tandem uncouples CB1Rs to prevent NMDAR hypofunction. Thus, early recruitment or a disproportionate cannabinoid induced response can bring about excess dampening of NMDAR activity, impeding its adequate integration with GPCR signaling. Alternatively, this control circuit can apparently be overridden in situations where bursts of NMDAR overactivity provoke convulsive syndromes. In this review we will discuss the possible relevance of the HINT1/σ1R tandem and its use by endocannabinoids to diminish NMDAR activity and their implications in psychosis/schizophrenia, as well as in NMDAR-mediated convulsive episodes.
منابع مشابه
O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملDopamine- induced hypophagia is mediated via NMDA and mGlu1 receptors in chicken
Background: Feeding behavior is regulated by a complex network which interacts via diverse signals from central and peripheral tissues. It is known dopaminergic and glutamatergic systems have crucial role on food intake regulation but scarce reports exist on their interaction in appetite regulation in broilers. OBJECTIVES: The present study was designed to examine the role of glutamatergic syst...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملPharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging
We have previously demonstrated that antagonism of glutamate NMDA receptors or activation of endocannabinoid receptors could reduce experimentally induced neuroinflammation within the hippocampus of young rats. In the current study, we investigated whether pharmacological manipulation of glutamate or endocannabinoid neurotransmission could reduce naturally-occurring neuroinflammation within the...
متن کاملPostnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کامل