Maximum Likelihood Estimation for Α - Stable Autoregressive Processes

نویسنده

  • Richard A. Davis
چکیده

We consider maximum likelihood estimation for both causal and noncausal autoregressive time series processes with non-Gaussian αstable noise. A nondegenerate limiting distribution is given for maximum likelihood estimators of the parameters of the autoregressive model equation and the parameters of the stable noise distribution. The estimators for the autoregressive parameters are n-consistent and converge in distribution to the maximizer of a random function. The form of this limiting distribution is intractable, but the shape of the distribution for these estimators can be examined using the bootstrap procedure. The bootstrap is asymptotically valid under general conditions. The estimators for the parameters of the stable noise distribution have the traditional n rate of convergence and are asymptotically normal. The behavior of the estimators for finite samples is studied via simulation, and we use maximum likelihood estimation to fit a noncausal autoregressive model to the natural logarithms of volumes of Wal-Mart stock traded daily on the New York Stock Exchange.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Array Signal Processing with Alpha Stable Distributions

x Introduction Literature Review Dissertation Organization and Contribution Abbreviations Array Signal Processing Fundamentals and Current Approaches Problem Formulation Maximum Likelihood DOA Estimation with Gaussian Distributions The Stochastic Maximum Likelihood Method The Deterministic Maximum Likelihood Method The Deterministic Cram er Rao Bound for Gaussian Noise Subspace Based DOA Estima...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Nonparametric Quasi-maximum Likelihood Estimation for Gaussian Locally Stationary Processes1 by Rainer Dahlhaus

This paper deals with nonparametric maximum likelihood estimation for Gaussian locally stationary processes. Our nonparametric MLE is constructed by minimizing a frequency domain likelihood over a class of functions. The asymptotic behavior of the resulting estimator is studied. The results depend on the richness of the class of functions. Both sieve estimation and global estimation are conside...

متن کامل

Poisson-Lindley INAR(1) Processes: Some Estimation and Forecasting Methods

This paper focuses on different methods of estimation and forecasting in first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1)) marginal distribution. For this purpose, the parameters of the model are estimated using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover, Bayesian and sieve bootstrap forecasting methods are proposed and predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008