Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria.
نویسندگان
چکیده
Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO(2) photoassimilation. Resistance of photosystem II to sulfide toxicity, allowing for oxygenic photosynthesis under sulfide, is found in cyanobacteria exposed to low H(2)S concentrations in various hot springs. When H(2)S levels exceed 200 muM another type of adaptation involving partial induction of anoxygenic photosynthesis, operating in concert with partially inhibited oxygenic photosynthesis, is found in cyanobacterial strains isolated from both hot springs and hypersaline cyanobacterial mats. The fourth type of adaptation to sulfide is found at H(2)S concentrations higher than 1 mM and involves a complete replacement of oxygenic photosynthesis by an effective sulfide-dependent, photosystem II-independent anoxygenic photosynthesis. The ecophysiology of the various sulfide-adapted cyanobacteria may point to their uniqueness within the division of cyanobacteria.
منابع مشابه
Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.
Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the gl...
متن کاملAnoxygenic Photosynthesis —A Photochemical Reaction That Does Not Contribute to Oxygen Reproduction—
Plants, algae, and cyanobacteria perform photosynthesis with the resultant production of oxygen, which supports all organisms that consume it through their respiration. This type of photosynthesis is an indispensable part of the global oxygen flux. However, another type of photochemical reaction , photosynthesis without oxygen production, exists, and has been designated anoxygenic photosynthesi...
متن کاملPhotosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica ‘Solar Lake’), a Model Anoxygenic Photosynthetic Cyanobacterium
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric ...
متن کاملA Proposal for Formation of Archaean Stromatolites before the Advent of Oxygenic Photosynthesis
Stromatolites are solid, laminar structures of biological origin. Living examples are sparsely distributed and formed by cyanobacteria, which are oxygenic phototrophs. However, stromatolites were abundant between 3.4 and 2.4 Gyr, prior to the advent of cyanobacteria and oxygenic photosynthesis. Here I propose that many Archaean stromatolites were seeded at points of efflux of hydrogen sulfide f...
متن کاملCyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 51 2 شماره
صفحات -
تاریخ انتشار 1986