One-step 5-stage Hermite-Birkhoff-Taylor ODE solver of order 12

نویسندگان

  • Truong Nguyen-Ba
  • Han Hao
  • Hemza Yagoub
  • Rémi Vaillancourt
چکیده

A one-step 4-stage Hermite-Birkhoff-Taylor method of order 12, denoted by HBT(12)4, is constructed for solving nonstiff systems of first-order differential equations of the form y′ = f(x, y), y(x0) = y0. The method uses derivatives y′ to y(9) as in Taylor methods combined with a 4-stage Runge-Kutta method. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution leads to Taylorand Runge-Kutta-type order conditions which are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than DormandPrince DP(8,7)13M and 4-stage Hermite-Birkhoff-Obrechkoff method of order 12. The stepsize is controlled by a formula which uses two high-order derivatives. HBT(12)4 is superior to DP(8,7)13M and Taylor method of order 12 in solving several test problems on the basis of the number of steps, CPU time, and maximum global error, thus showing the benefit of adding high-order derivatives to Runge-Kutta methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Convergence of the Variable-step Variable-order 3-stage Hermite–birkhoff Ode/dde Solver of Order 5 to 15

The ordinary and delay differential equations (ODEs/DDEs) solver HB515DDE is based on the discrete hybrid variable-step variable-order 3-stage Hermite–Birkhoff ODE solver of (consistency) order 5 to 15. The current version of the solver can handle ODEs and DDEs with statedependent, non-vanishing, small, vanishing and asymptotically vanishing delays. Delayed values are computed using Hermite int...

متن کامل

Variable-step variable-order 3-stage Hermite-Birkhoff-Obrechkoff DDE solver of order 4 to 14

Variable-step variable-order 3-stage Hermite–Birkhoff–Obrechkoff methods of order 4 to 14, denoted by HBO(4-14)3, are constructed for solving non-stiff systems of first-order differential equations of the form y′ = f(x, y), y(x0) = y0. These methods use y′ and y′′ as in Obrechkoff methods. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads...

متن کامل

Strong-Stability-Preserving, K-Step, 5- to 10-Stage, Hermite-Birkhoff Time-Discretizations of Order 12

We construct optimal k-step, 5to 10-stage, explicit, strong-stability-preserving Hermite-Birkhoff (SSP HB) methods of order 12 with nonnegative coefficients by combining linear k-step methods of order 9 with 5to 10-stage Runge-Kutta (RK) methods of order 4. Since these methods maintain the monotonicity property, they are well suited for solving hyperbolic PDEs by the method of lines after a spa...

متن کامل

Strong-Stability-Preserving 7-Stage Hermite-Birkhoff Time-Discretization Methods

Strong-stability-preserving (SSP) time-discretization methods have a nonlinear stability property that makes them particularly suitable for the integration of hyperbolic conservation laws. A collection of 4-stage explicit SSP Hermite-Birkhoff methods of orders 4 to 8 with nonnegative coefficients are constructed as k-step analogues of fourth-order Runge-Kutta methods with three off-step points....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 211  شماره 

صفحات  -

تاریخ انتشار 2009