Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?
نویسنده
چکیده
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.
منابع مشابه
From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase.
Ascorbate peroxidases are haem proteins that efficiently scavenge H2O2 in the cytosol and chloroplasts of plants. Database analyses retrieved 52 expressed sequence tags coding for Arabidopsis thaliana ascorbate peroxidases. Complete sequencing of non-redundant clones revealed three novel types in addition to the two cytosol types described previously in Arabidopsis. Analysis of sequence data av...
متن کاملA review of structural properties, metabolic function and measurement of peroxidase activity
The production of reactive oxygen species occurs during the natural metabolism of oxidative-breathing cells. Among reactive oxygen species, hydrogen peroxide is more dangerous to cell life due to its long half-life, but it is meanwhile an important regulatory molecule in redox signaling in living things. Peroxidases are one of the key antioxidant enzymes that are widely distributed in nature an...
متن کاملAscorbate and glutathione: the heart of the redox hub.
The discovery that there is a close relationship between ascorbate and glutathione dates from soon after the characterization of the chemical formulae of the two molecules (Szent-Györgyi, 1931; Hopkins and Morgan, 1936). Similarly, it has long been known that thylakoids can generate hydrogen peroxide (H2O2; Mehler, 1951). Following the discovery of superoxide and superoxide dismutase in mammali...
متن کاملProkaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes.
Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi,...
متن کامل2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions.
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple ...
متن کامل